Acoustic emission(AE)localization algorithms based on homogeneous media or single-velocity are less accurate when applied to the triaxial localization experiments.To the end,a robust triaxial localization method of AE...Acoustic emission(AE)localization algorithms based on homogeneous media or single-velocity are less accurate when applied to the triaxial localization experiments.To the end,a robust triaxial localization method of AE source using refraction path is proposed.Firstly,the control equation of the refraction path is established according to the sensor coordinates and arrival times.Secondly,considering the influence of time-difference-of-arrival(TDOA)errors,the residual of the governing equation is calculated to estimate the equation weight.Thirdly,the refraction points in different directions are solved using Snell’s law and orthogonal constraints.Finally,the source coordinates are iteratively solved by weighted correction terms.The feasibility and accuracy of the proposed method are verified by pencil-lead breaking experiments.The simulation results show that the new method is almost unaffected by the refraction ratio,and always holds more stable and accurate positioning performance than the traditional method under different ratios and scales of TDOA outliers.展开更多
In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-depe...In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-dependent problems.We use the convex splitting method,the variant energy quadratization method,and the scalar auxiliary variable method coupled with the LDG method to construct first-order temporal accurate schemes based on the gradient flow structure of the models.These semi-implicit schemes are decoupled,energy stable,and can be extended to high accuracy schemes using the semi-implicit spectral deferred correction method.Many bound preserving DG discretizations are only worked on explicit time integration methods and are difficult to get high-order accuracy.To overcome these difficulties,we use the Lagrange multipliers to enforce the implicit or semi-implicit LDG schemes to satisfy the bound constraints at each time step.This bound preserving limiter results in the Karush-Kuhn-Tucker condition,which can be solved by an efficient active set semi-smooth Newton method.Various numerical experiments illustrate the high-order accuracy and the effect of bound preserving.展开更多
The Heilongjiang Jianbiannongchang area is located at the confluence of the Great and Lesser Xing’an Ranges.This area has a complex magmatic and tectonic evolutionary history that has resulted in a complex and divers...The Heilongjiang Jianbiannongchang area is located at the confluence of the Great and Lesser Xing’an Ranges.This area has a complex magmatic and tectonic evolutionary history that has resulted in a complex and diverse geological background for mineralization.In this study,isometric logarithmic ratio(ILR)transformations of Au,Cu,Pb,Zn,and Sb contents were performed in the1:50,000 soil geochemical data of the Jianbiannongchang area.Robust principal component analysis(RPCA)was conducted based on ILR transformation.The local singularity and spectrum-area(S-A)methods were used to extract information on mineralogic anomalies.The results showed that:(1)the transformed data eliminated the influence of the original data closure effect,and the PC1and PC2 information obtained by applying RPCA reflected ore-producing element anomalies dominated by Au and Cu.(2)The local singularity method can enhance the information of the local strong and weak slow anomalies.After performing local singularity analysis on PC1 and PC2,the obtained local anomalies reflected the local singularity spatial anomaly patterns related to Cu and Au mineralization in this area,which is an effective method for trapping ore-producing anomalies.(3)Furthermore,the composite anomaly decomposition of PC1 and PC2 was performed using the S-A method,and the screened anomalous and background fields reflect the ore-producing anomalies related to Cu and Au mineralization.This information is in agreement with known Cu and Au mineralization.(4)The geochemical anomalies with mineralization potential were obtained outside the known mineralization sites by integrating the information of oreproducing anomalies extracted by the local singularity and S-A methods,providing the theoretical basis and exploration direction for future exploration in the study area.展开更多
This paper first attempts to solve the transient heat conduction problem by combining the recently proposed local knot method(LKM)with the dual reciprocity method(DRM).Firstly,the temporal derivative is discretized by...This paper first attempts to solve the transient heat conduction problem by combining the recently proposed local knot method(LKM)with the dual reciprocity method(DRM).Firstly,the temporal derivative is discretized by a finite difference scheme,and thus the governing equation of transient heat transfer is transformed into a non-homogeneous modified Helmholtz equation.Secondly,the solution of the non-homogeneous modified Helmholtz equation is decomposed into a particular solution and a homogeneous solution.And then,the DRM and LKM are used to solve the particular solution of the non-homogeneous equation and the homogeneous solution of the modified Helmholtz equation,respectively.The LKM is a recently proposed local radial basis function collocationmethod with themerits of being simple,accurate,and free ofmesh and integration.Compared with the traditional domain-type and boundary-type schemes,the present coupling algorithm could be treated as a really good alternative for the analysis of transient heat conduction on high-dimensional and complicated domains.Numerical experiments,including two-and three-dimensional heat transfer models,demonstrated the effectiveness and accuracy of the new methodology.展开更多
In this paper,a local discontinuous Galerkin(LDG)scheme for the time-fractional diffusion equation is proposed and analyzed.The Caputo time-fractional derivative(of orderα,with 0<α<1)is approximated by a finit...In this paper,a local discontinuous Galerkin(LDG)scheme for the time-fractional diffusion equation is proposed and analyzed.The Caputo time-fractional derivative(of orderα,with 0<α<1)is approximated by a finite difference method with an accuracy of order3-α,and the space discretization is based on the LDG method.For the finite difference method,we summarize and supplement some previous work by others,and apply it to the analysis of the convergence and stability of the proposed scheme.The optimal error estimate is obtained in the L2norm,indicating that the scheme has temporal(3-α)th-order accuracy and spatial(k+1)th-order accuracy,where k denotes the highest degree of a piecewise polynomial in discontinuous finite element space.The numerical results are also provided to verify the accuracy and efficiency of the considered scheme.展开更多
In this study,a phase-field scheme that rigorously obeys conservation laws and irreversible thermodynamics is developed for modeling stress-corrosion coupled damage(SCCD).The coupling constitutive relationships of the...In this study,a phase-field scheme that rigorously obeys conservation laws and irreversible thermodynamics is developed for modeling stress-corrosion coupled damage(SCCD).The coupling constitutive relationships of the deformation,phase-field damage,mass transfer,and electrostatic field are derived from the entropy inequality.The SCCD localization induced by secondary phases in Mg is numerically simulated using the implicit iterative algorithm of the self-defined finite elements.The quantitative evaluation of the SCCD of a C-ring is in good agreement with the experimental results.To capture the damage localization,a micro-galvanic corrosion domain is defined,and the buffering effect on charge migration is explored.Three cases are investigated to reveal the effect of localization on corrosion acceleration and provide guidance for the design for resistance to SCCD at the crystal scale.展开更多
Second-generation high-temperature superconducting(HTS)conductors,specifically rare earth-barium-copper-oxide(REBCO)coated conductor(CC)tapes,are promising candidates for high-energy and high-field superconducting app...Second-generation high-temperature superconducting(HTS)conductors,specifically rare earth-barium-copper-oxide(REBCO)coated conductor(CC)tapes,are promising candidates for high-energy and high-field superconducting applications.With respect to epoxy-impregnated REBCO composite magnets that comprise multilayer components,the thermomechanical characteristics of each component differ considerably under extremely low temperatures and strong electromagnetic fields.Traditional numerical models include homogenized orthotropic models,which simplify overall field calculation but miss detailed multi-physics aspects,and full refinement(FR)ones that are thorough but computationally demanding.Herein,we propose an extended multi-scale approach for analyzing the multi-field characteristics of an epoxy-impregnated composite magnet assembled by HTS pancake coils.This approach combines a global homogenization(GH)scheme based on the homogenized electromagnetic T-A model,a method for solving Maxwell's equations for superconducting materials based on the current vector potential T and the magnetic field vector potential A,and a homogenized orthotropic thermoelastic model to assess the electromagnetic and thermoelastic properties at the macroscopic scale.We then identify“dangerous regions”at the macroscopic scale and obtain finer details using a local refinement(LR)scheme to capture the responses of each component material in the HTS composite tapes at the mesoscopic scale.The results of the present GH-LR multi-scale approach agree well with those of the FR scheme and the experimental data in the literature,indicating that the present approach is accurate and efficient.The proposed GH-LR multi-scale approach can serve as a valuable tool for evaluating the risk of failure in large-scale HTS composite magnets.展开更多
This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either...This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints.展开更多
A local pseudo arc-length method(LPALM)for solving hyperbolic conservation laws is presented in this paper.The key idea of this method comes from the original arc-length method,through which the critical points are ...A local pseudo arc-length method(LPALM)for solving hyperbolic conservation laws is presented in this paper.The key idea of this method comes from the original arc-length method,through which the critical points are bypassed by transforming the computational space.The method is based on local changes of physical variables to choose the discontinuous stencil and introduce the pseudo arc-length parameter,and then transform the governing equations from physical space to arc-length space.In order to solve these equations in arc-length coordinate,it is necessary to combine the velocity of mesh points in the moving mesh method,and then convert the physical variable in arclength space back to physical space.Numerical examples have proved the effectiveness and generality of the new approach for linear equation,nonlinear equation and system of equations with discontinuous initial values.Non-oscillation solution can be obtained by adjusting the parameter and the mesh refinement number for problems containing both shock and rarefaction waves.展开更多
Nonlinear formulations of the meshless local Petrov-Galerkin (MLPG) method are presented for geometrically nonlinear problems. The method requires no mesh in computation and therefore avoids mesh distortion difficul...Nonlinear formulations of the meshless local Petrov-Galerkin (MLPG) method are presented for geometrically nonlinear problems. The method requires no mesh in computation and therefore avoids mesh distortion difficulties in the large deformation analysis. The essential boundary conditions in the present formulation axe imposed by a penalty method. An incremental and iterative solution procedure is used to solve geometrically nonlinear problems. Several examples are presented to demonstrate the effectiveness of the method in geometrically nonlinear problems analysis. Numerical results show that the MLPG method is an effective one and that the values of the unknown variable are quite accurate.展开更多
The objectives of this study are to employ the meshless local Petrov-Galerkin method (MLPGM) to solve three-dimensional shell problems. The computational accuracy of MLPGM for shell problems is affected by many fact...The objectives of this study are to employ the meshless local Petrov-Galerkin method (MLPGM) to solve three-dimensional shell problems. The computational accuracy of MLPGM for shell problems is affected by many factors, including the dimension of compact support domain, the dimension of quadrture domain, the number of integral cells and the number of Gauss points. These factors' sensitivity analysis is to adopt the Taguchi experimental design technology and point out the dimension of the quadrature domain with the largest influence on the computational accuracy of the present MLPGM for shells and give out the optimum combination of these factors. A few examples are given to verify the reliability and good convergence of MLPGM for shell problems compared to the theoretical or the finite element results.展开更多
This article analyzes the shift factors of the descending node local time for sun-synchronous satellites and proposes a shift control method to keep the local time shift within an allowance range. It is found that the...This article analyzes the shift factors of the descending node local time for sun-synchronous satellites and proposes a shift control method to keep the local time shift within an allowance range. It is found that the satellite orbit design and the orbit injection deviation are the causes for the initial shift velocity, whereas the atmospheric drag and the sun gravitational perturbation produce the shift acceleration. To deal with these shift factors, a shift control method is put forward, through such methods as orbit variation design, orbit altitude, and inclination keeping control. The simulation experiment and practical application have proved the effectiveness of this control method.展开更多
The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the bas...The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the basic function and of the weight function,and is mainly determined by that of the weight function.Therefore,the weight function greatly affects the accuracy of results obtained.Different kinds of weight functions,such as the spline function, the Gauss function and so on,are proposed recently by many researchers.In the present work,the features of various weight functions are illustrated through solving elasto-static problems using the local boundary integral equation method.The effect of various weight functions on the accuracy, convergence and stability of results obtained is also discussed.Examples show that the weight function proposed by Zhou Weiyuan and Gauss and the quartic spline weight function are better than the others if parameters c and α in Gauss and exponential weight functions are in the range of reasonable values,respectively,and the higher the smoothness of the weight function,the better the features of the solutions.展开更多
Previous works have shown that the suction probe cannot be used to accurately measure the upward and downward particle fluxes independently. A new method using a single optical probe to measure the local solid flux is...Previous works have shown that the suction probe cannot be used to accurately measure the upward and downward particle fluxes independently. A new method using a single optical probe to measure the local solid flux is presented. The measurement of upward, downward and net solid fluxes was carried out in a cold model circulating fluidized bed (CFB) unit. The result shows that the profile of the net solid flux is in good agreement with the previous experimental data measured with a suction probe. The comparison between the average solid flux determined with the optical measuring system and the external solid flux was made, and the maximum deviationturned out to be 22%, with the average error being about 6.9%. These confirm that the optical fiber system can be successfully used to measure the upward, downward and net solid fluxes simultaneously by correctly processing the sampling signals obtained from the optical measuring system.展开更多
The local buckling of stiffened panels is one of possible failure modes and concerned by engineers in the preliminary design of lightweight structures. In practice,a simplified model,i.e.,a rectangular plate with elas...The local buckling of stiffened panels is one of possible failure modes and concerned by engineers in the preliminary design of lightweight structures. In practice,a simplified model,i.e.,a rectangular plate with elastically restrained along its unloaded edges,is established and the Ritz method is usually employed for solutions. To use the Ritz method,however,the loaded edges of the plate are usually assumed to be simply supported. An empirical correction factor has to be used to account for clamped loaded edges. Here,a simple and efficient method,called the quadrature element method(QEM),is presented for obtaining accurate buckling behavior of rectangular plates with any combinations of boundary conditions, including the elastically restrained conditions. Different from the conventional high order finite element method(FEM),non-uniformly distributed nodes are used,and thus the method can achieve an exponential rate of convergence. Formulations are worked out in detail. A computer program is developed. Improvement of solution accuracy can be easily achieved by changing the number of element nodes in the computer program. Several numerical examples are given. Results are compared with either existing solutions or finite element data for verifications. It is shown that high solution accuracy is achieved. In addition,the proposed method and developed computer program can allow quick analysis of local buckling of stiffened panels and thus is suitable for optimization routines in the preliminary design stage.展开更多
In this paper,we present the local discontinuous Galerkin method for solving Burgers' equation and the modified Burgers' equation.We describe the algorithm formulation and practical implementation of the local disco...In this paper,we present the local discontinuous Galerkin method for solving Burgers' equation and the modified Burgers' equation.We describe the algorithm formulation and practical implementation of the local discontinuous Galerkin method in detail.The method is applied to the solution of the one-dimensional viscous Burgers' equation and two forms of the modified Burgers' equation.The numerical results indicate that the method is very accurate and efficient.展开更多
In the current work, we extend the local discontinuous Galerkin method to a more general application system. The Burgers and coupled Burgers equations are solved by the local discontinuous Galerkin method. Numerical e...In the current work, we extend the local discontinuous Galerkin method to a more general application system. The Burgers and coupled Burgers equations are solved by the local discontinuous Galerkin method. Numerical experiments are given to verify the efficiency and accuracy of our method. Moreover the numerical results show that the method can approximate sharp fronts accurately with minimal oscillation.展开更多
Employing an ideal elasto-plastic model,the typically used strength reduction method reduced the strength of all soil elements of a slope.Therefore,this method was called the global strength reduction method(GSRM).How...Employing an ideal elasto-plastic model,the typically used strength reduction method reduced the strength of all soil elements of a slope.Therefore,this method was called the global strength reduction method(GSRM).However,the deformation field obtained by GSRM could not reflect the real deformation of a slope when the slope became unstable.For most slopes,failure occurs once the strength of some regional soil is sufficiently weakened; thus,the local strength reduction method(LSRM)was proposed to analyze slope stability.In contrast with GSRM,LSRM only reduces the strength of local soil,while the strength of other soil remains unchanged.Therefore,deformation by LSRM is more reasonable than that by GSRM.In addition,the accuracy of the slope's deformation depends on the constitutive model to a large degree,and the variable-modulus elasto-plastic model was thus adopted.This constitutive model was an improvement of the Duncan–Chang model,which modified soil's deformation modulus according to stress level,and it thus better reflected the plastic feature of soil.Most importantly,the parameters of the variable-modulus elasto-plastic model could be determined through in-situ tests,and parameters determination by plate loading test and pressuremeter test were introduced.Therefore,it is easy to put this model into practice.Finally,LSRM and the variable-modulus elasto-plastic model were used to analyze Egongdai ancient landslide.Safety factor,deformation field,and optimal reinforcement measures for Egongdai ancient landslide were obtained based on the proposed method.展开更多
Peridynamics(PD)is a widely used theory to simulate discontinuities,but its application in real-world structural problems is somewhat limited due to the relatively low-efficiency.The numerical substructure method(NSM)...Peridynamics(PD)is a widely used theory to simulate discontinuities,but its application in real-world structural problems is somewhat limited due to the relatively low-efficiency.The numerical substructure method(NSM)presented by the authors and co-workers provides an efficient approach for modeling structures with local nonlinearities,which is usually restricted in problems of continuum mechanics.In this paper,an approach is presented to couple the PD theory with the NSM for modeling structures with local discontinuities,taking advantage of the powerful capability of the PD for discontinuities simulation and high computational efficiency of the NSM.The structure is simulated using liner elastic finite element(FE)model while the local cracking regions are isolated and simulated using a PD substructure model.A force corrector calculated from the PD model is applied on the FE model to consider the effect of discontinuities.The PD is integrated in the substructure model using interface elements with embedded PD nodes.The equations of motions of both the NSM system and the PD substructure are solved using the central difference method.Three examples of two-dimensional(2D)concrete cantilever beams under the concentrated force are investigated to verify the proposed coupling approach.展开更多
In this study, a multivariate local quadratic polynomial regression(MLQPR) method is proposed to design a model for the sludge volume index(SVI). In MLQPR, a quadratic polynomial regression function is established to ...In this study, a multivariate local quadratic polynomial regression(MLQPR) method is proposed to design a model for the sludge volume index(SVI). In MLQPR, a quadratic polynomial regression function is established to describe the relationship between SVI and the relative variables, and the important terms of the quadratic polynomial regression function are determined by the significant test of the corresponding coefficients. Moreover, a local estimation method is introduced to adjust the weights of the quadratic polynomial regression function to improve the model accuracy. Finally, the proposed method is applied to predict the SVI values in a real wastewater treatment process(WWTP). The experimental results demonstrate that the proposed MLQPR method has faster testing speed and more accurate results than some existing methods.展开更多
基金the National Natural Science Foundation of China (Nos.52304123 and 52104077)the Postdoctoral Fellowship Program of CPSF (No.GZB20230914)+1 种基金the China Postdoctoral Science Foundation (No.2023M730412)the National Key Research and Development Program for Young Scientists (No.2021YFC2900400)。
文摘Acoustic emission(AE)localization algorithms based on homogeneous media or single-velocity are less accurate when applied to the triaxial localization experiments.To the end,a robust triaxial localization method of AE source using refraction path is proposed.Firstly,the control equation of the refraction path is established according to the sensor coordinates and arrival times.Secondly,considering the influence of time-difference-of-arrival(TDOA)errors,the residual of the governing equation is calculated to estimate the equation weight.Thirdly,the refraction points in different directions are solved using Snell’s law and orthogonal constraints.Finally,the source coordinates are iteratively solved by weighted correction terms.The feasibility and accuracy of the proposed method are verified by pencil-lead breaking experiments.The simulation results show that the new method is almost unaffected by the refraction ratio,and always holds more stable and accurate positioning performance than the traditional method under different ratios and scales of TDOA outliers.
文摘In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-dependent problems.We use the convex splitting method,the variant energy quadratization method,and the scalar auxiliary variable method coupled with the LDG method to construct first-order temporal accurate schemes based on the gradient flow structure of the models.These semi-implicit schemes are decoupled,energy stable,and can be extended to high accuracy schemes using the semi-implicit spectral deferred correction method.Many bound preserving DG discretizations are only worked on explicit time integration methods and are difficult to get high-order accuracy.To overcome these difficulties,we use the Lagrange multipliers to enforce the implicit or semi-implicit LDG schemes to satisfy the bound constraints at each time step.This bound preserving limiter results in the Karush-Kuhn-Tucker condition,which can be solved by an efficient active set semi-smooth Newton method.Various numerical experiments illustrate the high-order accuracy and the effect of bound preserving.
基金supported by the Project of the Natural Science Foundation of Liaoning Province(2020-BS-258)the Scientific Research Fund Project of the Educational Department of Liaoning Provincial(LJ2020JCL010)+1 种基金The project was supported by the discipline innovation team of Liaoning Technical University(LNTU20TD-14)the Key Research and Development Project of Heilongjiang Province(GA21A204).
文摘The Heilongjiang Jianbiannongchang area is located at the confluence of the Great and Lesser Xing’an Ranges.This area has a complex magmatic and tectonic evolutionary history that has resulted in a complex and diverse geological background for mineralization.In this study,isometric logarithmic ratio(ILR)transformations of Au,Cu,Pb,Zn,and Sb contents were performed in the1:50,000 soil geochemical data of the Jianbiannongchang area.Robust principal component analysis(RPCA)was conducted based on ILR transformation.The local singularity and spectrum-area(S-A)methods were used to extract information on mineralogic anomalies.The results showed that:(1)the transformed data eliminated the influence of the original data closure effect,and the PC1and PC2 information obtained by applying RPCA reflected ore-producing element anomalies dominated by Au and Cu.(2)The local singularity method can enhance the information of the local strong and weak slow anomalies.After performing local singularity analysis on PC1 and PC2,the obtained local anomalies reflected the local singularity spatial anomaly patterns related to Cu and Au mineralization in this area,which is an effective method for trapping ore-producing anomalies.(3)Furthermore,the composite anomaly decomposition of PC1 and PC2 was performed using the S-A method,and the screened anomalous and background fields reflect the ore-producing anomalies related to Cu and Au mineralization.This information is in agreement with known Cu and Au mineralization.(4)The geochemical anomalies with mineralization potential were obtained outside the known mineralization sites by integrating the information of oreproducing anomalies extracted by the local singularity and S-A methods,providing the theoretical basis and exploration direction for future exploration in the study area.
基金supported by the NationalNatural Science Foundation of China (No.11802151)the Natural Science Foundation of Shandong Province of China (No.ZR2019BA008)the China Postdoctoral Science Foundation (No.2019M652315).
文摘This paper first attempts to solve the transient heat conduction problem by combining the recently proposed local knot method(LKM)with the dual reciprocity method(DRM).Firstly,the temporal derivative is discretized by a finite difference scheme,and thus the governing equation of transient heat transfer is transformed into a non-homogeneous modified Helmholtz equation.Secondly,the solution of the non-homogeneous modified Helmholtz equation is decomposed into a particular solution and a homogeneous solution.And then,the DRM and LKM are used to solve the particular solution of the non-homogeneous equation and the homogeneous solution of the modified Helmholtz equation,respectively.The LKM is a recently proposed local radial basis function collocationmethod with themerits of being simple,accurate,and free ofmesh and integration.Compared with the traditional domain-type and boundary-type schemes,the present coupling algorithm could be treated as a really good alternative for the analysis of transient heat conduction on high-dimensional and complicated domains.Numerical experiments,including two-and three-dimensional heat transfer models,demonstrated the effectiveness and accuracy of the new methodology.
基金supported by the State Key Program of National Natural Science Foundation of China(11931003)the National Natural Science Foundation of China(41974133)。
文摘In this paper,a local discontinuous Galerkin(LDG)scheme for the time-fractional diffusion equation is proposed and analyzed.The Caputo time-fractional derivative(of orderα,with 0<α<1)is approximated by a finite difference method with an accuracy of order3-α,and the space discretization is based on the LDG method.For the finite difference method,we summarize and supplement some previous work by others,and apply it to the analysis of the convergence and stability of the proposed scheme.The optimal error estimate is obtained in the L2norm,indicating that the scheme has temporal(3-α)th-order accuracy and spatial(k+1)th-order accuracy,where k denotes the highest degree of a piecewise polynomial in discontinuous finite element space.The numerical results are also provided to verify the accuracy and efficiency of the considered scheme.
基金the National Natural Science Foundation of China(Nos.11872216 and 12272192)the Natural Science Foundation of Zhejiang Province(No.LY22A020002)+2 种基金the Natural Science Foundation of Ningbo City(No.202003N4083)the Scientific Research Foundation of Graduate School of Ningbo UniversityNingbo Science and Technology Major Project(No.2022Z002)。
文摘In this study,a phase-field scheme that rigorously obeys conservation laws and irreversible thermodynamics is developed for modeling stress-corrosion coupled damage(SCCD).The coupling constitutive relationships of the deformation,phase-field damage,mass transfer,and electrostatic field are derived from the entropy inequality.The SCCD localization induced by secondary phases in Mg is numerically simulated using the implicit iterative algorithm of the self-defined finite elements.The quantitative evaluation of the SCCD of a C-ring is in good agreement with the experimental results.To capture the damage localization,a micro-galvanic corrosion domain is defined,and the buffering effect on charge migration is explored.Three cases are investigated to reveal the effect of localization on corrosion acceleration and provide guidance for the design for resistance to SCCD at the crystal scale.
基金Project supported by the National Natural Science Foundation of China(Nos.11932008 and 12272156)the Fundamental Research Funds for the Central Universities(No.lzujbky-2022-kb06)+1 种基金the Gansu Science and Technology ProgramLanzhou City’s Scientific Research Funding Subsidy to Lanzhou University of China。
文摘Second-generation high-temperature superconducting(HTS)conductors,specifically rare earth-barium-copper-oxide(REBCO)coated conductor(CC)tapes,are promising candidates for high-energy and high-field superconducting applications.With respect to epoxy-impregnated REBCO composite magnets that comprise multilayer components,the thermomechanical characteristics of each component differ considerably under extremely low temperatures and strong electromagnetic fields.Traditional numerical models include homogenized orthotropic models,which simplify overall field calculation but miss detailed multi-physics aspects,and full refinement(FR)ones that are thorough but computationally demanding.Herein,we propose an extended multi-scale approach for analyzing the multi-field characteristics of an epoxy-impregnated composite magnet assembled by HTS pancake coils.This approach combines a global homogenization(GH)scheme based on the homogenized electromagnetic T-A model,a method for solving Maxwell's equations for superconducting materials based on the current vector potential T and the magnetic field vector potential A,and a homogenized orthotropic thermoelastic model to assess the electromagnetic and thermoelastic properties at the macroscopic scale.We then identify“dangerous regions”at the macroscopic scale and obtain finer details using a local refinement(LR)scheme to capture the responses of each component material in the HTS composite tapes at the mesoscopic scale.The results of the present GH-LR multi-scale approach agree well with those of the FR scheme and the experimental data in the literature,indicating that the present approach is accurate and efficient.The proposed GH-LR multi-scale approach can serve as a valuable tool for evaluating the risk of failure in large-scale HTS composite magnets.
基金supported by the NSF under Grant DMS-2208391sponsored by the NSF under Grant DMS-1753581.
文摘This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints.
基金supported by the National Natural Science Foundation of China(11390363 and 11172041)Beijing Higher Education Young Elite Teacher Project(YETP1190)
文摘A local pseudo arc-length method(LPALM)for solving hyperbolic conservation laws is presented in this paper.The key idea of this method comes from the original arc-length method,through which the critical points are bypassed by transforming the computational space.The method is based on local changes of physical variables to choose the discontinuous stencil and introduce the pseudo arc-length parameter,and then transform the governing equations from physical space to arc-length space.In order to solve these equations in arc-length coordinate,it is necessary to combine the velocity of mesh points in the moving mesh method,and then convert the physical variable in arclength space back to physical space.Numerical examples have proved the effectiveness and generality of the new approach for linear equation,nonlinear equation and system of equations with discontinuous initial values.Non-oscillation solution can be obtained by adjusting the parameter and the mesh refinement number for problems containing both shock and rarefaction waves.
基金Project supported by the National 973 Program (No.2004CB719402), the National Natural Science Foundation of China (No. 10372030)the Open Research Projects supported by the Project Fund of the Hubei Province Key Lab of Mechanical Transmission & Manufacturing Engineering Wuhan University of Science & Technology (No.2003A16).
文摘Nonlinear formulations of the meshless local Petrov-Galerkin (MLPG) method are presented for geometrically nonlinear problems. The method requires no mesh in computation and therefore avoids mesh distortion difficulties in the large deformation analysis. The essential boundary conditions in the present formulation axe imposed by a penalty method. An incremental and iterative solution procedure is used to solve geometrically nonlinear problems. Several examples are presented to demonstrate the effectiveness of the method in geometrically nonlinear problems analysis. Numerical results show that the MLPG method is an effective one and that the values of the unknown variable are quite accurate.
基金the Scientific Foundation of National Outstanding Youth of China(No.50225520)the Science Foundation of Shandong University of Technology of China(No.2006KJM33).
文摘The objectives of this study are to employ the meshless local Petrov-Galerkin method (MLPGM) to solve three-dimensional shell problems. The computational accuracy of MLPGM for shell problems is affected by many factors, including the dimension of compact support domain, the dimension of quadrture domain, the number of integral cells and the number of Gauss points. These factors' sensitivity analysis is to adopt the Taguchi experimental design technology and point out the dimension of the quadrature domain with the largest influence on the computational accuracy of the present MLPGM for shells and give out the optimum combination of these factors. A few examples are given to verify the reliability and good convergence of MLPGM for shell problems compared to the theoretical or the finite element results.
基金supported by the China Postdotoral Science Foundation(20060401004)
文摘This article analyzes the shift factors of the descending node local time for sun-synchronous satellites and proposes a shift control method to keep the local time shift within an allowance range. It is found that the satellite orbit design and the orbit injection deviation are the causes for the initial shift velocity, whereas the atmospheric drag and the sun gravitational perturbation produce the shift acceleration. To deal with these shift factors, a shift control method is put forward, through such methods as orbit variation design, orbit altitude, and inclination keeping control. The simulation experiment and practical application have proved the effectiveness of this control method.
文摘The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the basic function and of the weight function,and is mainly determined by that of the weight function.Therefore,the weight function greatly affects the accuracy of results obtained.Different kinds of weight functions,such as the spline function, the Gauss function and so on,are proposed recently by many researchers.In the present work,the features of various weight functions are illustrated through solving elasto-static problems using the local boundary integral equation method.The effect of various weight functions on the accuracy, convergence and stability of results obtained is also discussed.Examples show that the weight function proposed by Zhou Weiyuan and Gauss and the quartic spline weight function are better than the others if parameters c and α in Gauss and exponential weight functions are in the range of reasonable values,respectively,and the higher the smoothness of the weight function,the better the features of the solutions.
文摘Previous works have shown that the suction probe cannot be used to accurately measure the upward and downward particle fluxes independently. A new method using a single optical probe to measure the local solid flux is presented. The measurement of upward, downward and net solid fluxes was carried out in a cold model circulating fluidized bed (CFB) unit. The result shows that the profile of the net solid flux is in good agreement with the previous experimental data measured with a suction probe. The comparison between the average solid flux determined with the optical measuring system and the external solid flux was made, and the maximum deviationturned out to be 22%, with the average error being about 6.9%. These confirm that the optical fiber system can be successfully used to measure the upward, downward and net solid fluxes simultaneously by correctly processing the sampling signals obtained from the optical measuring system.
基金partially supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The local buckling of stiffened panels is one of possible failure modes and concerned by engineers in the preliminary design of lightweight structures. In practice,a simplified model,i.e.,a rectangular plate with elastically restrained along its unloaded edges,is established and the Ritz method is usually employed for solutions. To use the Ritz method,however,the loaded edges of the plate are usually assumed to be simply supported. An empirical correction factor has to be used to account for clamped loaded edges. Here,a simple and efficient method,called the quadrature element method(QEM),is presented for obtaining accurate buckling behavior of rectangular plates with any combinations of boundary conditions, including the elastically restrained conditions. Different from the conventional high order finite element method(FEM),non-uniformly distributed nodes are used,and thus the method can achieve an exponential rate of convergence. Formulations are worked out in detail. A computer program is developed. Improvement of solution accuracy can be easily achieved by changing the number of element nodes in the computer program. Several numerical examples are given. Results are compared with either existing solutions or finite element data for verifications. It is shown that high solution accuracy is achieved. In addition,the proposed method and developed computer program can allow quick analysis of local buckling of stiffened panels and thus is suitable for optimization routines in the preliminary design stage.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11261035,11171038,and 10771019)the Science Research Foundation of Institute of Higher Education of Inner Mongolia Autonomous Region,China (Grant No. NJZZ12198)the Natural Science Foundation of Inner Mongolia Autonomous Region,China (Grant No. 2012MS0102)
文摘In this paper,we present the local discontinuous Galerkin method for solving Burgers' equation and the modified Burgers' equation.We describe the algorithm formulation and practical implementation of the local discontinuous Galerkin method in detail.The method is applied to the solution of the one-dimensional viscous Burgers' equation and two forms of the modified Burgers' equation.The numerical results indicate that the method is very accurate and efficient.
基金supported by the National Natural Science Foundation of China(Grant No.11171038)
文摘In the current work, we extend the local discontinuous Galerkin method to a more general application system. The Burgers and coupled Burgers equations are solved by the local discontinuous Galerkin method. Numerical experiments are given to verify the efficiency and accuracy of our method. Moreover the numerical results show that the method can approximate sharp fronts accurately with minimal oscillation.
基金Project([2005]205)supported by the Science and Technology Planning Project of Water Resources Department of Guangdong Province,ChinaProject(2012-7)supported by Guangdong Bureau of Highway Administration,ChinaProject(2012210020203)supported by the Fundamental Research Funds for the Central Universities,China
文摘Employing an ideal elasto-plastic model,the typically used strength reduction method reduced the strength of all soil elements of a slope.Therefore,this method was called the global strength reduction method(GSRM).However,the deformation field obtained by GSRM could not reflect the real deformation of a slope when the slope became unstable.For most slopes,failure occurs once the strength of some regional soil is sufficiently weakened; thus,the local strength reduction method(LSRM)was proposed to analyze slope stability.In contrast with GSRM,LSRM only reduces the strength of local soil,while the strength of other soil remains unchanged.Therefore,deformation by LSRM is more reasonable than that by GSRM.In addition,the accuracy of the slope's deformation depends on the constitutive model to a large degree,and the variable-modulus elasto-plastic model was thus adopted.This constitutive model was an improvement of the Duncan–Chang model,which modified soil's deformation modulus according to stress level,and it thus better reflected the plastic feature of soil.Most importantly,the parameters of the variable-modulus elasto-plastic model could be determined through in-situ tests,and parameters determination by plate loading test and pressuremeter test were introduced.Therefore,it is easy to put this model into practice.Finally,LSRM and the variable-modulus elasto-plastic model were used to analyze Egongdai ancient landslide.Safety factor,deformation field,and optimal reinforcement measures for Egongdai ancient landslide were obtained based on the proposed method.
基金Financial support by the National Key Research and Development program of China under Grant No.2016YFC0701106the National Natural Science Foundation of China under grants No.51578473the program of China Scholarship Council(CSC,No.201606060083)are gratefully acknowledged.
文摘Peridynamics(PD)is a widely used theory to simulate discontinuities,but its application in real-world structural problems is somewhat limited due to the relatively low-efficiency.The numerical substructure method(NSM)presented by the authors and co-workers provides an efficient approach for modeling structures with local nonlinearities,which is usually restricted in problems of continuum mechanics.In this paper,an approach is presented to couple the PD theory with the NSM for modeling structures with local discontinuities,taking advantage of the powerful capability of the PD for discontinuities simulation and high computational efficiency of the NSM.The structure is simulated using liner elastic finite element(FE)model while the local cracking regions are isolated and simulated using a PD substructure model.A force corrector calculated from the PD model is applied on the FE model to consider the effect of discontinuities.The PD is integrated in the substructure model using interface elements with embedded PD nodes.The equations of motions of both the NSM system and the PD substructure are solved using the central difference method.Three examples of two-dimensional(2D)concrete cantilever beams under the concentrated force are investigated to verify the proposed coupling approach.
文摘In this study, a multivariate local quadratic polynomial regression(MLQPR) method is proposed to design a model for the sludge volume index(SVI). In MLQPR, a quadratic polynomial regression function is established to describe the relationship between SVI and the relative variables, and the important terms of the quadratic polynomial regression function are determined by the significant test of the corresponding coefficients. Moreover, a local estimation method is introduced to adjust the weights of the quadratic polynomial regression function to improve the model accuracy. Finally, the proposed method is applied to predict the SVI values in a real wastewater treatment process(WWTP). The experimental results demonstrate that the proposed MLQPR method has faster testing speed and more accurate results than some existing methods.