By analyzing the optical spectra and electron paramagnetic resonance parameter D, the local structure distortion of (NiF6)4- clusters in AMF3 (A=K, Rb; M=Zn, Cd, Ca) and K2ZnF4 series are studied using the complet...By analyzing the optical spectra and electron paramagnetic resonance parameter D, the local structure distortion of (NiF6)4- clusters in AMF3 (A=K, Rb; M=Zn, Cd, Ca) and K2ZnF4 series are studied using the complete energy matrix based on the double spin-orbit coupling parameter model for configuration ions in a tetragonal ligand field. The results indicate that the contribution of ligand to spin-orbit coupling interaction should be considered for our studied systems. Moreover, the relationships between D and the spin-obit coupling coefficients as well as the average parameter and the divergent parameter are discussed.展开更多
The parametric excited vibration of a pipe under thermal loading may occur because the fluid is often transported heatedly. The effects of thermal loading on the pipe stability and local bifurcations have rarely been ...The parametric excited vibration of a pipe under thermal loading may occur because the fluid is often transported heatedly. The effects of thermal loading on the pipe stability and local bifurcations have rarely been studied. The stability and the local bifurcations of the lateral parametric resonance of the pipe induced by the pulsating fluid velocity and the thermal loading are studied. A mathematical model for a simply supported pipe is developed according to the Hamilton principle. Two partial differential equations describing the lateral and longitudinal vibration are obtained. The singularity theory is utilized to anMyze the stability and the bifurcation of the system solutions. The transition sets and the bifurcation diagrams are obtained both in the unfolding parameter space and the physical parameter space, which can reveal the relationship between the thermal field parameter and the dynamic behaviors of the pipe. The frequency response and the relationship between the critical thermal rate and the pulsating fluid velocity are obtained. The numerical results demonstrate the accuracy of the single-mode expansion of the solution and the stability and local bifurcation analyses. It also confirms the existence of the chaos. The presented work can provide valuable information for the design of the pipeline and the controllers to prevent the structural instability.展开更多
In this paper we study the following nonlinear BSDE:y(t) + ∫1 t f(s,y(s),z(s))ds + ∫1 t [z(s) + g 1 (s,y(s)) + εg 2 (s,y(s),z(s))]dW s=ξ,t ∈ [0,1],where ε is a small parameter.The coeffi...In this paper we study the following nonlinear BSDE:y(t) + ∫1 t f(s,y(s),z(s))ds + ∫1 t [z(s) + g 1 (s,y(s)) + εg 2 (s,y(s),z(s))]dW s=ξ,t ∈ [0,1],where ε is a small parameter.The coefficient f is locally Lipschitz in y and z,the coefficient g 1 is locally Lipschitz in y,and the coefficient g 2 is uniformly Lipschitz in y and z.Let L N be the locally Lipschitz constant of the coefficients on the ball B(0,N) of R d × R d×r.We prove the existence and uniqueness of the solution when L N ~ √ log N and the parameter ε is small.展开更多
Assessment of the Hubble parameter as an indicator of the expansion rate of the universe holds a central position in the field of astronomy. From its initial estimate of about 500 km<span style="white-space:no...Assessment of the Hubble parameter as an indicator of the expansion rate of the universe holds a central position in the field of astronomy. From its initial estimate of about 500 km<span style="white-space:nowrap;">⋅</span>sec<sup>-1</sup><span style="white-space:nowrap;">⋅</span>parsc<sup>-1</sup>, this value had been steadily amended as the observational tools became more accurate and precise. Despite this, a gap remains between the value of observations relating to local and nonlocal estimations of the Hubble parameter that gave rise to what became known as the Hubble tension. This tension is addressed here while dealing with space fabric as a cosmological fluid that undergoes transition.展开更多
A dimension decomposition(DIDE)method for multiple incoherent source localization using uniform circular array(UCA)is proposed.Due to the fact that the far-field signal can be considered as the state where the range p...A dimension decomposition(DIDE)method for multiple incoherent source localization using uniform circular array(UCA)is proposed.Due to the fact that the far-field signal can be considered as the state where the range parameter of the nearfield signal is infinite,the algorithm for the near-field source localization is also suitable for estimating the direction of arrival(DOA)of far-field signals.By decomposing the first and second exponent term of the steering vector,the three-dimensional(3-D)parameter is transformed into two-dimensional(2-D)and onedimensional(1-D)parameter estimation.First,by partitioning the received data,we exploit propagator to acquire the noise subspace.Next,the objective function is established and partial derivative is applied to acquire the spatial spectrum of 2-D DOA.At last,the estimated 2-D DOA is utilized to calculate the phase of the decomposed vector,and the least squares(LS)is performed to acquire the range parameters.In comparison to the existing algorithms,the proposed DIDE algorithm requires neither the eigendecomposition of covariance matrix nor the search process of range spatial spectrum,which can achieve satisfactory localization and reduce computational complexity.Simulations are implemented to illustrate the advantages of the proposed DIDE method.Moreover,simulations demonstrate that the proposed DIDE method can also classify the mixed far-field and near-field signals.展开更多
The quantitative relationship between the spin Hamiltonian parameters (D, g|| Ag) and the crystal structure parameters for the Cr3+-Vzη tetragonal defect centre in a Cr3+ :KZnF3 crystal is established by using...The quantitative relationship between the spin Hamiltonian parameters (D, g|| Ag) and the crystal structure parameters for the Cr3+-Vzη tetragonal defect centre in a Cr3+ :KZnF3 crystal is established by using the superposition model. On the above basis, the local structure distortion and the spin Hamiltonian parameter for the Cr3+-Vzn tetragonal defect centre in the KZnF3 crystal are systematically investigated using the complete diagonalization method. It is found that the Vzn vacancy and the differences in mass, radius and charge between the Cr3+ and the Zn2+ ions induce the local lattice distortion of the Cr3+ centre ions in the KZnF3 crystal. The local lattice distortion is shown to give rise to the tetragonal crystal field, which in turn results in the tetragonal zero-field splitting parameter D and the anisotropic g factor Ag. We find that the ligand F- ion along I001] and the other five F- ions move towards the central Cr3+ by distances of A1 = 0.0121 nm and A2 = 0.0026 nm, respectively. Our approach takes into account the spin-rbit interaction as well as the spin-spin, spin other-orbit, and orbit-rbit interactions omitted in the previous studies. It is found that for the Cr3+ ions in the Cr3+:KZnF3 crystal, although the spin-rbit mechanism is the most important one, the contribution to the spin Hamiltonian parameters from the other three mechanisms, including spin- spin, spin-other-orbit, and orbit-orbit magnetic interactions, is appreciable and should not be omitted, especially for the zero-field splitting (ZFS) parameter D.展开更多
The local structure distortion, the spin Hamiltonian (SH) parameters, and the electric fine structure of the ground state for Mn^2+ (3d^5) ion in ZnO crystals are systematically investigated, where spin-spin (SS...The local structure distortion, the spin Hamiltonian (SH) parameters, and the electric fine structure of the ground state for Mn^2+ (3d^5) ion in ZnO crystals are systematically investigated, where spin-spin (SS), spin-other-orbit (SOO) and orbit-orbit (OO) magnetic interactions, besides the well-known spin-orbit (SO) coupling, are taken into account for the first time, by using the complete diagonalization method. The theoretical results of the second-order zerofield splitting (ZFS) parameter D, the fourth-order ZFS parameter (a-F), the Zeeman g-factors: g// and g⊥, and the energy differences of the ground state: δ1 and δ2 for Mn^2+ in Mn^2+: ZnO are in good agreement with experimental measurements when the three O^2- ions below the Mn^2+ ion rotate by 1.085° away from the [111]-axis. Hence, the local structure distortion effect plays an important role in explaining the spectroscopic properties of Mn^2+ ions in Mn^2+: ZnO crystals. It is found for Mn^2+ ions in Mn^2+: ZnO crystals that although the SO mechanism is the most important one, the contributions to the SH parameters, made by other four mechanisms, i.e. SS, SOO, OO, and SO-SS-SOO-OO mechanisms, are significant and should not be omitted, especially for calculating ZFS parameter D.展开更多
An artificial localized corrosion system is assembled and some parameters related to the localized corrosion in active dissolution state (i.e., non-passive state) have been studied. The results showed that the develop...An artificial localized corrosion system is assembled and some parameters related to the localized corrosion in active dissolution state (i.e., non-passive state) have been studied. The results showed that the developed electrochemical system can satisfactorily imitate a naturally formed localized corrosion and the coupling current can indicate the maximum localized propagating rate. In this artificial system, the anodic dissolution reaction followed the auto-catalytic mechanism. The localized corrosion current density was dependent on the area ratio R of the cathode to the occluded anode. While R was equal to or more than 6, the coupling current reached at a maximum value and did not alter with the increase in R-value. Therefore, R=7 is chosen as one of these optimum parameters used in constructing the system, with which the biggest galvanic current might be obtained. In contrast, the thickness of the polymer filler separating the occluded anode area from the bulk electrolyte solution and the volume of the occluded anode area did not affect the corrosion current obviously. They might affect the response time to approach a steady state.展开更多
This paper considers the time difference of arrival(TDOA)and frequency difference of arrival(FDOA)estimation problem for joint localization using unmanned aerial vehicles(UAVs),involving range migration(RM)and Doppler...This paper considers the time difference of arrival(TDOA)and frequency difference of arrival(FDOA)estimation problem for joint localization using unmanned aerial vehicles(UAVs),involving range migration(RM)and Doppler ambiguity within observation interval.A robust estimation method based on interpolation and resampling is proposed.Specifically,the interpolation artificially increases the pulse repetition frequency(PRF).After that,the resampling eliminates the coupling between range frequency and slow time.Finally,a coherent integration step based on inverse discrete Fourier transform(IDFT)is used to achieve parameter estimation and suppress the grating lobes caused by interpolation.The proposed method could be efficiently implemented by fast Fourier transform(FFT),inverse FFT(IFFT)and non-uniform FFT(NUFFT)without parameter searching procedures.Numerical experiments indicate that the proposed method has nearly optimal anti-noise performance but much lower computational complexity than the maximum likelihood estimator,which makes it more competitive in practical applications.展开更多
Novel distributed parameter neural networks are proposed for solving partial differential equations, and their dynamic performances are studied in Hilbert space. The locally connected neural networks are obtained by s...Novel distributed parameter neural networks are proposed for solving partial differential equations, and their dynamic performances are studied in Hilbert space. The locally connected neural networks are obtained by separating distributed parameter neural networks. Two simulations are also given. Both theoretical and computed results illustrate that the distributed parameter neural networks are effective and efficient for solving partial differential equation problems.展开更多
This paper presents a method for segmenting a 3D point cloud into planar surfaces using recently obtained discretegeometry results. In discrete geometry, a discrete plane is defined as a set of grid points lying betwe...This paper presents a method for segmenting a 3D point cloud into planar surfaces using recently obtained discretegeometry results. In discrete geometry, a discrete plane is defined as a set of grid points lying between two parallel planes with a small distance, called thickness. In contrast to the continuous case, there exist a finite number of local geometric patterns (LGPs) appearing on discrete planes. Moreover, such an LGP does not possess the unique normal vector but a set of normal vectors. By using those LGP properties, we first reject non-linear points from a point cloud, and then classify non-rejected points whose LGPs have common normal vectors into a planar-surface-point set. From each segmented point set, we also estimate the values of parameters of a discrete plane by minimizing its thickness.展开更多
Based on the experimental results of local temperature field formed in the evolution period of defects, the defect field is defined by this internal temperature field. The evolutionary processes of statistically corre...Based on the experimental results of local temperature field formed in the evolution period of defects, the defect field is defined by this internal temperature field. The evolutionary processes of statistically correlative meso-scopic defects are analysed with the growth rate and nucleation rate of the meso-defect, and it is deemed that the dynamic failure process of the viscoelastic material with defects can be quantitatively described by the normal method of the procedure of heat wave transmission. The defect field is regarded as a complex system of the union of the real sets and null sets, its main characteristics depending on the stratum hypothesis about the activities of the subsystems of the highest stratum described by ordered parameters. The fluctuation of ordered parameters is demonstrated by means of the projection operator method. The constitutive equation with ordered parameters for the meso-defect evolutionary state of viscoelastic material with defects is deduced from the nonlinear rheological dynamic approach, and its solution is obtained.展开更多
This paper is mainly about a local controller whose main function is to achieve the constant tension of the thin denier filament in the high speed winding process. A mathematic model of the induction motor while contr...This paper is mainly about a local controller whose main function is to achieve the constant tension of the thin denier filament in the high speed winding process. A mathematic model of the induction motor while controlling its stator frequency and voltage is given. A new kind of variable parameter, real time constant tension control system is presented. The paper uses the microprocessor -INTEL 8097 as the CPU of the local controller. A standard serial communication interface-RS232 is used to communicate with the main computer. Computer simulation and experiment test show that this system has good control characteristics.展开更多
The problem of linear parameter varying (LPV) system identification is considered based on the locally weighted technique which provides estimation of the LPV model parameters at each distinct data time point by giv...The problem of linear parameter varying (LPV) system identification is considered based on the locally weighted technique which provides estimation of the LPV model parameters at each distinct data time point by giving large weights to measurements that are "close" to the current time point and small weights to measurements "far" from the current time point. Issues such as choice of distance function, weighting function and bandwidth selection are discussed. The developed method is easy to implement and simulation results illustrate its efficiency.展开更多
The importance of studying the local magnitude related to seismic activity occurred recently in the region of Itacarambi, state of Minas Gerais, is due to the fact that these were earthquakes of intraplate origin. Fro...The importance of studying the local magnitude related to seismic activity occurred recently in the region of Itacarambi, state of Minas Gerais, is due to the fact that these were earthquakes of intraplate origin. From the study of [1] and the relation between local magnitude and seismic signal duration, was performed a data analysis obtained in the same region, on the period between October/2007 and June/2008, in which we can estimate the equation MD = 2.153 (±0.072) LogD – 1.925 (±0.132) to calculate the magnitude of local duration. We can also estimate one value for the b parameter using the equation LogN = a – bMD from a frequency-magnitude study. It was found the value of b = 0.826 (±0.020) for the general activity of Itacarambi, MG, that is within the universal range proposed by [2].展开更多
文摘By analyzing the optical spectra and electron paramagnetic resonance parameter D, the local structure distortion of (NiF6)4- clusters in AMF3 (A=K, Rb; M=Zn, Cd, Ca) and K2ZnF4 series are studied using the complete energy matrix based on the double spin-orbit coupling parameter model for configuration ions in a tetragonal ligand field. The results indicate that the contribution of ligand to spin-orbit coupling interaction should be considered for our studied systems. Moreover, the relationships between D and the spin-obit coupling coefficients as well as the average parameter and the divergent parameter are discussed.
基金Project supported by the National Natural Science Foundation of Shandong Province(No.ZR2013AL017)the National Natural Science Foundation of China(No.11272357)the Fundamental Research Funds for the Central Universities of China(No.11CX04049A)
文摘The parametric excited vibration of a pipe under thermal loading may occur because the fluid is often transported heatedly. The effects of thermal loading on the pipe stability and local bifurcations have rarely been studied. The stability and the local bifurcations of the lateral parametric resonance of the pipe induced by the pulsating fluid velocity and the thermal loading are studied. A mathematical model for a simply supported pipe is developed according to the Hamilton principle. Two partial differential equations describing the lateral and longitudinal vibration are obtained. The singularity theory is utilized to anMyze the stability and the bifurcation of the system solutions. The transition sets and the bifurcation diagrams are obtained both in the unfolding parameter space and the physical parameter space, which can reveal the relationship between the thermal field parameter and the dynamic behaviors of the pipe. The frequency response and the relationship between the critical thermal rate and the pulsating fluid velocity are obtained. The numerical results demonstrate the accuracy of the single-mode expansion of the solution and the stability and local bifurcation analyses. It also confirms the existence of the chaos. The presented work can provide valuable information for the design of the pipeline and the controllers to prevent the structural instability.
文摘In this paper we study the following nonlinear BSDE:y(t) + ∫1 t f(s,y(s),z(s))ds + ∫1 t [z(s) + g 1 (s,y(s)) + εg 2 (s,y(s),z(s))]dW s=ξ,t ∈ [0,1],where ε is a small parameter.The coefficient f is locally Lipschitz in y and z,the coefficient g 1 is locally Lipschitz in y,and the coefficient g 2 is uniformly Lipschitz in y and z.Let L N be the locally Lipschitz constant of the coefficients on the ball B(0,N) of R d × R d×r.We prove the existence and uniqueness of the solution when L N ~ √ log N and the parameter ε is small.
文摘Assessment of the Hubble parameter as an indicator of the expansion rate of the universe holds a central position in the field of astronomy. From its initial estimate of about 500 km<span style="white-space:nowrap;">⋅</span>sec<sup>-1</sup><span style="white-space:nowrap;">⋅</span>parsc<sup>-1</sup>, this value had been steadily amended as the observational tools became more accurate and precise. Despite this, a gap remains between the value of observations relating to local and nonlocal estimations of the Hubble parameter that gave rise to what became known as the Hubble tension. This tension is addressed here while dealing with space fabric as a cosmological fluid that undergoes transition.
基金supported by the National Natural Science Foundation of China(62022091,61921001).
文摘A dimension decomposition(DIDE)method for multiple incoherent source localization using uniform circular array(UCA)is proposed.Due to the fact that the far-field signal can be considered as the state where the range parameter of the nearfield signal is infinite,the algorithm for the near-field source localization is also suitable for estimating the direction of arrival(DOA)of far-field signals.By decomposing the first and second exponent term of the steering vector,the three-dimensional(3-D)parameter is transformed into two-dimensional(2-D)and onedimensional(1-D)parameter estimation.First,by partitioning the received data,we exploit propagator to acquire the noise subspace.Next,the objective function is established and partial derivative is applied to acquire the spatial spectrum of 2-D DOA.At last,the estimated 2-D DOA is utilized to calculate the phase of the decomposed vector,and the least squares(LS)is performed to acquire the range parameters.In comparison to the existing algorithms,the proposed DIDE algorithm requires neither the eigendecomposition of covariance matrix nor the search process of range spatial spectrum,which can achieve satisfactory localization and reduce computational complexity.Simulations are implemented to illustrate the advantages of the proposed DIDE method.Moreover,simulations demonstrate that the proposed DIDE method can also classify the mixed far-field and near-field signals.
基金Projects supported by the Natural Science Foundation of Shaanxi Province,China (Grant No.2010JM1015)the Special Scientific Program of the Education Department of Shaanxi Province,China (Grant No.11JK0537)the Baoji University of Arts and Sciences Key Research,China (Grant No.ZK0842)
文摘The quantitative relationship between the spin Hamiltonian parameters (D, g|| Ag) and the crystal structure parameters for the Cr3+-Vzη tetragonal defect centre in a Cr3+ :KZnF3 crystal is established by using the superposition model. On the above basis, the local structure distortion and the spin Hamiltonian parameter for the Cr3+-Vzn tetragonal defect centre in the KZnF3 crystal are systematically investigated using the complete diagonalization method. It is found that the Vzn vacancy and the differences in mass, radius and charge between the Cr3+ and the Zn2+ ions induce the local lattice distortion of the Cr3+ centre ions in the KZnF3 crystal. The local lattice distortion is shown to give rise to the tetragonal crystal field, which in turn results in the tetragonal zero-field splitting parameter D and the anisotropic g factor Ag. We find that the ligand F- ion along I001] and the other five F- ions move towards the central Cr3+ by distances of A1 = 0.0121 nm and A2 = 0.0026 nm, respectively. Our approach takes into account the spin-rbit interaction as well as the spin-spin, spin other-orbit, and orbit-rbit interactions omitted in the previous studies. It is found that for the Cr3+ ions in the Cr3+:KZnF3 crystal, although the spin-rbit mechanism is the most important one, the contribution to the spin Hamiltonian parameters from the other three mechanisms, including spin- spin, spin-other-orbit, and orbit-orbit magnetic interactions, is appreciable and should not be omitted, especially for the zero-field splitting (ZFS) parameter D.
基金supported by the Science and Technology Foundation of Shaanxi Province,China (Grant No 2006K04-G29)the National Defense Foundation of China (Grant No EP060302)the Key Research Foundation of Baoji University of Arts and Sciences,China (Grant No ZK0842)
文摘The local structure distortion, the spin Hamiltonian (SH) parameters, and the electric fine structure of the ground state for Mn^2+ (3d^5) ion in ZnO crystals are systematically investigated, where spin-spin (SS), spin-other-orbit (SOO) and orbit-orbit (OO) magnetic interactions, besides the well-known spin-orbit (SO) coupling, are taken into account for the first time, by using the complete diagonalization method. The theoretical results of the second-order zerofield splitting (ZFS) parameter D, the fourth-order ZFS parameter (a-F), the Zeeman g-factors: g// and g⊥, and the energy differences of the ground state: δ1 and δ2 for Mn^2+ in Mn^2+: ZnO are in good agreement with experimental measurements when the three O^2- ions below the Mn^2+ ion rotate by 1.085° away from the [111]-axis. Hence, the local structure distortion effect plays an important role in explaining the spectroscopic properties of Mn^2+ ions in Mn^2+: ZnO crystals. It is found for Mn^2+ ions in Mn^2+: ZnO crystals that although the SO mechanism is the most important one, the contributions to the SH parameters, made by other four mechanisms, i.e. SS, SOO, OO, and SO-SS-SOO-OO mechanisms, are significant and should not be omitted, especially for calculating ZFS parameter D.
文摘An artificial localized corrosion system is assembled and some parameters related to the localized corrosion in active dissolution state (i.e., non-passive state) have been studied. The results showed that the developed electrochemical system can satisfactorily imitate a naturally formed localized corrosion and the coupling current can indicate the maximum localized propagating rate. In this artificial system, the anodic dissolution reaction followed the auto-catalytic mechanism. The localized corrosion current density was dependent on the area ratio R of the cathode to the occluded anode. While R was equal to or more than 6, the coupling current reached at a maximum value and did not alter with the increase in R-value. Therefore, R=7 is chosen as one of these optimum parameters used in constructing the system, with which the biggest galvanic current might be obtained. In contrast, the thickness of the polymer filler separating the occluded anode area from the bulk electrolyte solution and the volume of the occluded anode area did not affect the corrosion current obviously. They might affect the response time to approach a steady state.
基金The authors would like to acknowledge National Natural Science Foundation of China(Grant No.xxxxxx)。
文摘This paper considers the time difference of arrival(TDOA)and frequency difference of arrival(FDOA)estimation problem for joint localization using unmanned aerial vehicles(UAVs),involving range migration(RM)and Doppler ambiguity within observation interval.A robust estimation method based on interpolation and resampling is proposed.Specifically,the interpolation artificially increases the pulse repetition frequency(PRF).After that,the resampling eliminates the coupling between range frequency and slow time.Finally,a coherent integration step based on inverse discrete Fourier transform(IDFT)is used to achieve parameter estimation and suppress the grating lobes caused by interpolation.The proposed method could be efficiently implemented by fast Fourier transform(FFT),inverse FFT(IFFT)and non-uniform FFT(NUFFT)without parameter searching procedures.Numerical experiments indicate that the proposed method has nearly optimal anti-noise performance but much lower computational complexity than the maximum likelihood estimator,which makes it more competitive in practical applications.
文摘Novel distributed parameter neural networks are proposed for solving partial differential equations, and their dynamic performances are studied in Hilbert space. The locally connected neural networks are obtained by separating distributed parameter neural networks. Two simulations are also given. Both theoretical and computed results illustrate that the distributed parameter neural networks are effective and efficient for solving partial differential equation problems.
文摘This paper presents a method for segmenting a 3D point cloud into planar surfaces using recently obtained discretegeometry results. In discrete geometry, a discrete plane is defined as a set of grid points lying between two parallel planes with a small distance, called thickness. In contrast to the continuous case, there exist a finite number of local geometric patterns (LGPs) appearing on discrete planes. Moreover, such an LGP does not possess the unique normal vector but a set of normal vectors. By using those LGP properties, we first reject non-linear points from a point cloud, and then classify non-rejected points whose LGPs have common normal vectors into a planar-surface-point set. From each segmented point set, we also estimate the values of parameters of a discrete plane by minimizing its thickness.
基金The project supported by National Natural Science Foundation of China(NNSF 19632002).
文摘Based on the experimental results of local temperature field formed in the evolution period of defects, the defect field is defined by this internal temperature field. The evolutionary processes of statistically correlative meso-scopic defects are analysed with the growth rate and nucleation rate of the meso-defect, and it is deemed that the dynamic failure process of the viscoelastic material with defects can be quantitatively described by the normal method of the procedure of heat wave transmission. The defect field is regarded as a complex system of the union of the real sets and null sets, its main characteristics depending on the stratum hypothesis about the activities of the subsystems of the highest stratum described by ordered parameters. The fluctuation of ordered parameters is demonstrated by means of the projection operator method. The constitutive equation with ordered parameters for the meso-defect evolutionary state of viscoelastic material with defects is deduced from the nonlinear rheological dynamic approach, and its solution is obtained.
文摘This paper is mainly about a local controller whose main function is to achieve the constant tension of the thin denier filament in the high speed winding process. A mathematic model of the induction motor while controlling its stator frequency and voltage is given. A new kind of variable parameter, real time constant tension control system is presented. The paper uses the microprocessor -INTEL 8097 as the CPU of the local controller. A standard serial communication interface-RS232 is used to communicate with the main computer. Computer simulation and experiment test show that this system has good control characteristics.
基金Supported by the National Natural Science Foundation of China(10826100, 10901139 and 60964005)
文摘The problem of linear parameter varying (LPV) system identification is considered based on the locally weighted technique which provides estimation of the LPV model parameters at each distinct data time point by giving large weights to measurements that are "close" to the current time point and small weights to measurements "far" from the current time point. Issues such as choice of distance function, weighting function and bandwidth selection are discussed. The developed method is easy to implement and simulation results illustrate its efficiency.
基金CNPq for the funding via PIBICCNPq-3003529/2010-5
文摘The importance of studying the local magnitude related to seismic activity occurred recently in the region of Itacarambi, state of Minas Gerais, is due to the fact that these were earthquakes of intraplate origin. From the study of [1] and the relation between local magnitude and seismic signal duration, was performed a data analysis obtained in the same region, on the period between October/2007 and June/2008, in which we can estimate the equation MD = 2.153 (±0.072) LogD – 1.925 (±0.132) to calculate the magnitude of local duration. We can also estimate one value for the b parameter using the equation LogN = a – bMD from a frequency-magnitude study. It was found the value of b = 0.826 (±0.020) for the general activity of Itacarambi, MG, that is within the universal range proposed by [2].