期刊文献+
共找到1,289篇文章
< 1 2 65 >
每页显示 20 50 100
Classification of Gastric Lesions Using Gabor Block Local Binary Patterns
1
作者 Muhammad Tahir Farhan Riaz +1 位作者 Imran Usman Mohamed Ibrahim Habib 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期4007-4022,共16页
The identification of cancer tissues in Gastroenterology imaging poses novel challenges to the computer vision community in designing generic decision support systems.This generic nature demands the image descriptors ... The identification of cancer tissues in Gastroenterology imaging poses novel challenges to the computer vision community in designing generic decision support systems.This generic nature demands the image descriptors to be invariant to illumination gradients,scaling,homogeneous illumination,and rotation.In this article,we devise a novel feature extraction methodology,which explores the effectiveness of Gabor filters coupled with Block Local Binary Patterns in designing such descriptors.We effectively exploit the illumination invariance properties of Block Local Binary Patterns and the inherent capability of convolutional neural networks to construct novel rotation,scale and illumination invariant features.The invariance characteristics of the proposed Gabor Block Local Binary Patterns(GBLBP)are demonstrated using a publicly available texture dataset.We use the proposed feature extraction methodology to extract texture features from Chromoendoscopy(CH)images for the classification of cancer lesions.The proposed feature set is later used in conjuncture with convolutional neural networks to classify the CH images.The proposed convolutional neural network is a shallow network comprising of fewer parameters in contrast to other state-of-the-art networks exhibiting millions of parameters required for effective training.The obtained results reveal that the proposed GBLBP performs favorably to several other state-of-the-art methods including both hand crafted and convolutional neural networks-based features. 展开更多
关键词 Texture analysis Gabor filters gastroenterology imaging convolutional neural networks block local binary patterns
下载PDF
An Improved Artificial Rabbits Optimization Algorithm with Chaotic Local Search and Opposition-Based Learning for Engineering Problems and Its Applications in Breast Cancer Problem
2
作者 Feyza AltunbeyÖzbay ErdalÖzbay Farhad Soleimanian Gharehchopogh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1067-1110,共44页
Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems... Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems,the ARO algorithm shows slow convergence speed and can fall into local minima.To overcome these drawbacks,this paper proposes chaotic opposition-based learning ARO(COARO),an improved version of the ARO algorithm that incorporates opposition-based learning(OBL)and chaotic local search(CLS)techniques.By adding OBL to ARO,the convergence speed of the algorithm increases and it explores the search space better.Chaotic maps in CLS provide rapid convergence by scanning the search space efficiently,since their ergodicity and non-repetitive properties.The proposed COARO algorithm has been tested using thirty-three distinct benchmark functions.The outcomes have been compared with the most recent optimization algorithms.Additionally,the COARO algorithm’s problem-solving capabilities have been evaluated using six different engineering design problems and compared with various other algorithms.This study also introduces a binary variant of the continuous COARO algorithm,named BCOARO.The performance of BCOARO was evaluated on the breast cancer dataset.The effectiveness of BCOARO has been compared with different feature selection algorithms.The proposed BCOARO outperforms alternative algorithms,according to the findings obtained for real applications in terms of accuracy performance,and fitness value.Extensive experiments show that the COARO and BCOARO algorithms achieve promising results compared to other metaheuristic algorithms. 展开更多
关键词 Artificial rabbit optimization binary optimization breast cancer chaotic local search engineering design problem opposition-based learning
下载PDF
Local binary pattern-based reversible data hiding 被引量:4
3
作者 Monalisa Sahu Neelamadhab Padhy +1 位作者 Sasanko Sekhar Gantayat Aditya Kumar Sahu 《CAAI Transactions on Intelligence Technology》 SCIE EI 2022年第4期695-709,共15页
A novel local binary pattern-based reversible data hiding(LBP-RDH)technique has been suggested to maintain a fair symmetry between the perceptual transparency and hiding capacity.During embedding,the image is divided ... A novel local binary pattern-based reversible data hiding(LBP-RDH)technique has been suggested to maintain a fair symmetry between the perceptual transparency and hiding capacity.During embedding,the image is divided into various 3×3 blocks.Then,using the LBP-based image descriptor,the LBP codes for each block are computed.Next,the obtained LBP codes are XORed with the embedding bits and are concealed in the respective blocks using the proposed pixel readjustment process.Further,each cover image(CI)pixel produces two different stego-image pixels.Likewise,during extraction,the CI pixels are restored without the loss of a single bit of information.The outcome of the proposed technique with respect to perceptual transparency measures,such as peak signal-to-noise ratio and structural similarity index,is found to be superior to that of some of the recent and state-of-the-art techniques.In addition,the proposed technique has shown excellent resilience to various stego-attacks,such as pixel difference histogram as well as regular and singular analysis.Besides,the out-off boundary pixel problem,which endures in most of the contemporary data hiding techniques,has been successfully addressed. 展开更多
关键词 hiding capacity(HC) local binary pattern(LBP) peak signal-to-noise ratio(PSNR) reversible data hiding
下载PDF
A Novel Tracking-by-Detection Method with Local Binary Pattern and Kalman Filter 被引量:1
4
作者 Zhongli Wang Chunxiao Jia +6 位作者 Baigen Cai Litong Fan Chuanqi Tao Zhiyi Zhang Yinling Wang Min Zhang Guoyan Lyu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2018年第3期74-87,共14页
Tracking-Learning-Detection( TLD) is an adaptive tracking algorithm,which tracks by learning the appearance of the object as the video progresses and shows a good performance in long-term tracking task.But our experim... Tracking-Learning-Detection( TLD) is an adaptive tracking algorithm,which tracks by learning the appearance of the object as the video progresses and shows a good performance in long-term tracking task.But our experiments show that under some scenarios,such as non-uniform illumination changing,serious occlusion,or motion-blurred,it may fails to track the object. In this paper,to surmount some of these shortages,especially for the non-uniform illumination changing,and give full play to the performance of the tracking-learning-detection framework, we integrate the local binary pattern( LBP) with the cascade classifiers,and define a new classifier named ULBP( Uniform Local Binary Pattern) classifiers. When the object appearance has rich texture features,the ULBP classifier will work instead of the nearest neighbor classifier in TLD algorithm,and a recognition module is designed to choose the suitable classifier between the original nearest neighbor( NN) classifier and the ULBP classifier. To further decrease the computing load of the proposed tracking approach,Kalman filter is applied to predict the searching range of the tracking object.A comprehensive study has been conducted to confirm the effectiveness of the proposed algorithm (TLD _ULBP),and different multi-property datasets were used. The quantitative evaluations show a significant improvement over the original TLD,especially in various lighting case. 展开更多
关键词 Tracking-Learning-Detection (TLD) local binary pattern (LBP) Kalman filter
下载PDF
Vehicle detection algorithm based on codebook and local binary patterns algorithms 被引量:1
5
作者 许雪梅 周立超 +1 位作者 墨芹 郭巧云 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期593-600,共8页
Detecting the moving vehicles in jittering traffic scenes is a very difficult problem because of the complex environment.Only by the color features of the pixel or only by the texture features of image cannot establis... Detecting the moving vehicles in jittering traffic scenes is a very difficult problem because of the complex environment.Only by the color features of the pixel or only by the texture features of image cannot establish a suitable background model for the moving vehicles. In order to solve this problem, the Gaussian pyramid layered algorithm is proposed, combining with the advantages of the Codebook algorithm and the Local binary patterns(LBP) algorithm. Firstly, the image pyramid is established to eliminate the noises generated by the camera shake. Then, codebook model and LBP model are constructed on the low-resolution level and the high-resolution level of Gaussian pyramid, respectively. At last, the final test results are obtained through a set of operations according to the spatial relations of pixels. The experimental results show that this algorithm can not only eliminate the noises effectively, but also save the calculating time with high detection sensitivity and high detection accuracy. 展开更多
关键词 background modeling Gaussian pyramid CODEBOOK local binary patterns(LBP) moving vehicle detection
下载PDF
Defocus Blur Segmentation Using Local Binary Patterns with Adaptive Threshold 被引量:1
6
作者 Usman Ali Muhammad Tariq Mahmood 《Computers, Materials & Continua》 SCIE EI 2022年第4期1597-1611,共15页
Enormousmethods have been proposed for the detection and segmentation of blur and non-blur regions of the images.Due to the limited available information about blur type,scenario and the level of blurriness,detection ... Enormousmethods have been proposed for the detection and segmentation of blur and non-blur regions of the images.Due to the limited available information about blur type,scenario and the level of blurriness,detection and segmentation is a challenging task.Hence,the performance of the blur measure operator is an essential factor and needs improvement to attain perfection.In this paper,we propose an effective blur measure based on local binary pattern(LBP)with adaptive threshold for blur detection.The sharpness metric developed based on LBP used a fixed threshold irrespective of the type and level of blur,that may not be suitable for images with variations in imaging conditions,blur amount and type.Contrarily,the proposed measure uses an adaptive threshold for each input image based on the image and blur properties to generate improved sharpness metric.The adaptive threshold is computed based on the model learned through support vector machine(SVM).The performance of the proposed method is evaluated using two different datasets and is compared with five state-of-the-art methods.Comparative analysis reveals that the proposed method performs significantly better qualitatively and quantitatively against all of the compared methods. 展开更多
关键词 Adaptive threshold blur measure defocus blur segmentation local binary pattern support vector machine
下载PDF
An Improved Real-Time Face Recognition System at Low Resolution Based on Local Binary Pattern Histogram Algorithm and CLAHE 被引量:2
7
作者 Kamal Chandra Paul Semih Aslan 《Optics and Photonics Journal》 2021年第4期63-78,共16页
This research presents an improved real-time face recognition system at a low<span><span><span style="font-family:" color:red;"=""> </span></span></span><... This research presents an improved real-time face recognition system at a low<span><span><span style="font-family:" color:red;"=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">resolution of 15 pixels with pose and emotion and resolution variations. We have designed our datasets named LRD200 and LRD100, which have been used for training and classification. The face detection part uses the Viola-Jones algorithm, and the face recognition part receives the face image from the face detection part to process it using the Local Binary Pattern Histogram (LBPH) algorithm with preprocessing using contrast limited adaptive histogram equalization (CLAHE) and face alignment. The face database in this system can be updated via our custom-built standalone android app and automatic restarting of the training and recognition process with an updated database. Using our proposed algorithm, a real-time face recognition accuracy of 78.40% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 98.05% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px have been achieved using the LRD200 database containing 200 images per person. With 100 images per person in the database (LRD100) the achieved accuracies are 60.60% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 95% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px respectively. A facial deflection of about 30</span></span></span><span><span><span><span><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span></span><span> on either side from the front face showed an average face recognition precision of 72.25%-81.85%. This face recognition system can be employed for law enforcement purposes, where the surveillance camera captures a low-resolution image because of the distance of a person from the camera. It can also be used as a surveillance system in airports, bus stations, etc., to reduce the risk of possible criminal threats.</span></span></span></span> 展开更多
关键词 Face Detection Face Recognition Low Resolution Feature Extraction Security System Access Control System Viola-Jones Algorithm LBPH local binary Pattern Histogram
下载PDF
Palmprint Recognition Based on Statistical Local Binary Orientation Code
8
作者 Mei-Ru Mu Qiu-Qi Ruan 《Journal of Electronic Science and Technology》 CAS 2010年第3期230-236,共7页
A novel coding based method named as local binary orientation code (LBOCode) for palmprint recognition is proposed. The palmprint image is firstly convolved with a bank of Gabor filters, and then the orientation inf... A novel coding based method named as local binary orientation code (LBOCode) for palmprint recognition is proposed. The palmprint image is firstly convolved with a bank of Gabor filters, and then the orientation information is attained with a winner-take-all rule. Subsequently, the resulting orientation mapping array is operated by uniform local binary pattern. Accordingly, LBOCode image is achieved which contains palmprint orientation information in pixel level. Further we divide the LBOCode image into several equal-size and nonoverlapping regions, and extract the statistical code histogram from each region independently, which builds a global description of palmprint in regional level. In matching stage, the matching score between two palmprints is achieved by calculating the two spatial enhanced histograms' dissimilarity, which brings the benefit of computational simplicity. Experimental results demonstrate that the proposed method achieves more promising recognition performance compared with that of several state-of-the-art methods. 展开更多
关键词 Gabor filter local binary pattern orientation code palmprint recognition.
下载PDF
Novel similarity measures for face representation based on local binary pattern
9
作者 祝世虎 封举富 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第2期223-226,共4页
The successful face recognition based on local binary pattern(LBP)relies on the effective extraction of LBP features and the inferring of similarity between the extracted features.In this paper,we focus on the latter ... The successful face recognition based on local binary pattern(LBP)relies on the effective extraction of LBP features and the inferring of similarity between the extracted features.In this paper,we focus on the latter and propose two novel similarity measures for the local matching methods and the holistic matching methods respectively.One is Earth Mover's Distance with Hamming and Lp ground distance(EMD-HammingLp),which is a cross-bin dissimilarity measure for LBP histograms.The other is IMage Hamming Distance(IMHD),which is a dissimilarity measure for the whole LBP images.Experiments on FERET database show that the proposed two similarity measures outperform the state-of-the-art Chi-square similarity measure for extraction of LBP features. 展开更多
关键词 similarity measurement local binary pattern Earth Mover's Distance IMage Euclidean Distance
下载PDF
A Local Binary Pattern-Based Method for Color and Multicomponent Texture Analysis
10
作者 Yao Taky Alvarez Kossonou Alain Clément +1 位作者 Bouchta Sahraoui Jérémie Zoueu 《Journal of Signal and Information Processing》 2020年第3期58-73,共16页
Local Binary Patterns (LBPs) have been highly used in texture classification <span style="font-family:Verdana;">for their robustness, their ease of implementation an</span><span style="fo... Local Binary Patterns (LBPs) have been highly used in texture classification <span style="font-family:Verdana;">for their robustness, their ease of implementation an</span><span style="font-family:Verdana;">d their low computational</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">cost. Initially designed to deal with gray level images, several methods based on them in the literature have been proposed for images having more than one spectral band. To achieve it, whether assumption using color information or combining spectral band two by two was done. Those methods use micro </span><span style="font-family:Verdana;">structures as texture features. In this paper, our goal was to design texture features which are relevant to color and multicomponent texture analysi</span><span style="font-family:Verdana;">s withou</span><span style="font-family:Verdana;">t any assumption.</span></span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">Based on methods designed for gray scale images, we find the combination of micro and macro structures efficient for multispectral texture analysis. The experimentations were carried out on color images from Outex databases and multicomponent images from red blood cells captured using a multispectral microscope equipped with 13 LEDs ranging </span><span style="font-family:Verdana;">from 375 nm to 940 nm. In all achieved experimentations, our propos</span><span style="font-family:Verdana;">al presents the best classification scores compared to common multicomponent LBP methods.</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">99.81%, 100.00%,</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">99.07% and 97.67% are</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">maximum scores obtained with our strategy respectively applied to images subject to rotation, blur, illumination variation and the multicomponent ones.</span> 展开更多
关键词 Multispectral Images local binary Patterns (LBP) Texture Analysis Rotation Invariance Illumination Variation Blurring Invariance
下载PDF
Local Binary Patterns and Its Variants for Finger Knuckle Print Recognition in Multi-Resolution Domain
11
作者 D. R. Arun C. Christopher Columbus K. Meena 《Circuits and Systems》 2016年第10期3142-3149,共8页
Finger Knuckle Print biometric plays a vital role in establishing security for real-time environments. The success of human authentication depends on high speed and accuracy. This paper proposed an integrated approach... Finger Knuckle Print biometric plays a vital role in establishing security for real-time environments. The success of human authentication depends on high speed and accuracy. This paper proposed an integrated approach of personal authentication using texture based Finger Knuckle Print (FKP) recognition in multiresolution domain. FKP images are rich in texture patterns. Recently, many texture patterns are proposed for biometric feature extraction. Hence, it is essential to review whether Local Binary Patterns or its variants perform well for FKP recognition. In this paper, Local Directional Pattern (LDP), Local Derivative Ternary Pattern (LDTP) and Local Texture Description Framework based Modified Local Directional Pattern (LTDF_MLDN) based feature extraction in multiresolution domain are experimented with Nearest Neighbor and Extreme Learning Machine (ELM) Classifier for FKP recognition. Experiments were conducted on PolYU database. The result shows that LDTP in Contourlet domain achieves a promising performance. It also proves that Soft classifier performs better than the hard classifier. 展开更多
关键词 Biometrics Finger Knuckle Print Contourlet Transform local binary Pattern (LBP) local Directional Pattern (LDP) local Derivative Ternary Pattern (LDTP) local Texture Description Framework Based Modified local Directional Pattern (LTDF_MLDN) Nearest Neighbor (NN) Classifier Extreme Learning Machine (ELM) Classifier
下载PDF
Android Malware Detection Using Local Binary Pattern and Principal Component Analysis
12
作者 Qixin Wu Zheng Qin +3 位作者 Jinxin Zhang Hui Yin Guangyi Yang Kuangsheng Hu 《国际计算机前沿大会会议论文集》 2017年第1期63-66,共4页
Nowadays,analysis methods based on big data have been widely used in malicious software detection.Since Android has become the dominator of smartphone operating system market,the number of Android malicious applicatio... Nowadays,analysis methods based on big data have been widely used in malicious software detection.Since Android has become the dominator of smartphone operating system market,the number of Android malicious applications are increasing rapidly as well,which attracts attention of malware attackers and researchers alike.Due to the endless evolution of the malware,it is critical to apply the analysis methods based on machine learning to detect malwares and stop them from leakaging our privacy information.In this paper,we propose a novel Android malware detection method based on binary texture feature recognition by Local Binary Pattern and Principal Component Analysis,which can visualize malware and detect malware accurately.Also,our method analyzes malware binary directly without any decompiler,sandbox or virtual machines,which avoid time and resource consumption caused by decompiler or monitor in this process.Experimentation on 5127 benigns and 5560 malwares shows that we obtain a detection accuracy of 90%. 展开更多
关键词 ANDROID MALWARE detection binary TEXTURE FEATURE local binary PATTERN Principal component analysis
下载PDF
基于改进二进制粒子群算法优化DBN的轴承故障诊断 被引量:1
13
作者 陈剑 黄志 +2 位作者 徐庭亮 孙太华 李雪原 《组合机床与自动化加工技术》 北大核心 2024年第1期168-173,共6页
针对滚动轴承故障振动信号非平稳性的特点,对二进制粒子群优化算法(binary particles swarm optimization,BPSO)和深度信念网络(deep belief network,DBN)进行研究,提出一种基于局部均值分解(local mean decomposition,LMD)和IBPSO-DBN... 针对滚动轴承故障振动信号非平稳性的特点,对二进制粒子群优化算法(binary particles swarm optimization,BPSO)和深度信念网络(deep belief network,DBN)进行研究,提出一种基于局部均值分解(local mean decomposition,LMD)和IBPSO-DBN的轴承故障诊断方法。提出用加权惯性权重改进BPSO迭代过程中的固定权重,再用改进BPSO优化DBN的隐含层神经元个数和学习率。该方法先对信号进行LMD,提取出各PF分量的散布熵和时域指标,并构建特征矩阵,然后把特征矩阵输入改进BPSO-DBN模型中训练,实现滚动轴承故障诊断和分类。采用试验轴承数据做验证并与其他诊断方法对比,结果表明,基于LMD和BPSO-DBN的滚动轴承故障诊断方法具有较好的故障识别率。 展开更多
关键词 局部均值分解 二进制粒子群优化算法 深度置信网络 滚动轴承故障诊断
下载PDF
一种基于LC-BoVW模型的建筑垃圾物料识别算法
14
作者 宋琳 宋琪 +1 位作者 马宗方 赵慧轩 《控制工程》 CSCD 北大核心 2024年第10期1738-1745,共8页
针对建筑垃圾物料的种类多、形貌易混淆等问题,构建了一种基于局部约束的视觉词袋(local constraint-bag of visual words,LC-BoVW)模型的建筑垃圾物料识别算法。首先,对建筑垃圾物料图像分块,分别提取局部颜色特征和局部二值模式特征;... 针对建筑垃圾物料的种类多、形貌易混淆等问题,构建了一种基于局部约束的视觉词袋(local constraint-bag of visual words,LC-BoVW)模型的建筑垃圾物料识别算法。首先,对建筑垃圾物料图像分块,分别提取局部颜色特征和局部二值模式特征;考虑到图像分块特征的局部相似特性,构建LC-BoVW模型分别对目标图像的显著特征进行统计。然后,基于信息融合思想对特征统计量进行融合,形成图像的判别性特征并输入到分类器中进行物料的精确识别。最后,利用自建的5类建筑垃圾物料图像数据集进行实验,实验结果表明,所提算法能够快速有效地实现建筑垃圾物料识别,平均识别准确率可达到97.92%。 展开更多
关键词 建筑垃圾物料识别 特征统计 局部约束 局部二值模式 特征融合
下载PDF
基于局部二值模式及其变形的场景分类综合实验设计与实践
15
作者 陆福相 阎石 《实验室研究与探索》 CAS 北大核心 2024年第6期118-122,152,共6页
以学生为中心,兴趣为导向,解决问题为目标,采取基于问题的教学方法,以基于局部二值模式及其变形特征的场景分类为例,设计与教学大纲紧密结合、有效支撑课程目标的综合实验。在教师的主导下,学生以团队协作方式完成综合实验,串联计算机... 以学生为中心,兴趣为导向,解决问题为目标,采取基于问题的教学方法,以基于局部二值模式及其变形特征的场景分类为例,设计与教学大纲紧密结合、有效支撑课程目标的综合实验。在教师的主导下,学生以团队协作方式完成综合实验,串联计算机视觉与图像处理课程的重点知识,训练分析问题、解决问题的能力,切身感受解决问题的过程,提升实践与创业创新能力。 展开更多
关键词 新工科 实验教学 局部二值模式 场景分类
下载PDF
基于多频特征和纹理增强的轻量化图像超分辨率重建
16
作者 刘媛媛 张雨欣 +1 位作者 王晓燕 朱路 《计算机应用研究》 CSCD 北大核心 2024年第8期2515-2520,共6页
现有基于卷积神经网络主要关注图像重构的精度,忽略了过度参数化、特征提取不充分以及计算资源浪费等问题。针对上述问题,提出了一种轻量级多频率特征提取网络(MFEN),设计了轻量化晶格信息交互结构,利用通道分割和多模式卷积组合减少参... 现有基于卷积神经网络主要关注图像重构的精度,忽略了过度参数化、特征提取不充分以及计算资源浪费等问题。针对上述问题,提出了一种轻量级多频率特征提取网络(MFEN),设计了轻量化晶格信息交互结构,利用通道分割和多模式卷积组合减少参数量;通过分离图像的低频、中频以及高频率信息后进行特征异构提取,提高网络的表达能力和特征区分性,使其更注重纹理细节特征的复原,并合理分配计算资源。此外,在网络内部融合局部二值模式(LBP)算法用于增强网络对纹理感知的敏感度,旨在进一步提高网络对细节的提取能力。经验证,该方法在复杂度和性能之间取得了良好的权衡,即实现轻量有效提取图像特征的同时重建出高分辨率图像。在Set5数据集上的2倍放大实验结果最终表明,相比较于基于卷积神经网络的图像超分辨率经典算法(SRCNN)和较新算法(MADNet),所提方法的峰值信噪比(PSNR)分别提升了1.31 dB和0.12 dB,参数量相比MADNet减少了55%。 展开更多
关键词 图像超分辨率重建 卷积神经网络 轻量化 多频率特征提取 局部二值模式算法
下载PDF
基于LBP和注意力机制的改进VGG网络的人脸表情识别方法 被引量:1
17
作者 张中华 杨慧炯 《软件工程》 2024年第1期23-26,31,共5页
为了提高训练速度和人脸表情识别效果,提出一种基于局部二值模式(Local Binary Pattern,LBP)和注意力机制的改进视觉几何群网络(Visual Geometry Group Network,VGG网络)的人脸表情识别方法。首先,通过LBP获取数据集的纹理特征。其次,... 为了提高训练速度和人脸表情识别效果,提出一种基于局部二值模式(Local Binary Pattern,LBP)和注意力机制的改进视觉几何群网络(Visual Geometry Group Network,VGG网络)的人脸表情识别方法。首先,通过LBP获取数据集的纹理特征。其次,利用全局平均池化层代替全连接层,并在基准模型卷积层后和全局平均池化层前引入注意力模块,创建新网络模型NEW-VGG;通过对NEW-VGG做消融实验,验证模型改进的正确性。最后,融合LBP+NEW-VGG模型对CK+和Fer2013两种数据集进行10倍交叉验证,取得了97.98%和76.75%的识别率。实验结果表明,该方法不仅能加快网络训练迭代速度,增强人脸表情识别效果,还具有较强的鲁棒性。 展开更多
关键词 面部表情识别 局部二值模式 注意力机制
下载PDF
基于量子局部内在维度的对抗样本检测算法
18
作者 张瑜 昌燕 张仕斌 《计算机应用》 CSCD 北大核心 2024年第2期490-495,共6页
为解决基于局部内在维度(LID)的对抗样本检测算法高时间复杂度问题,结合量子计算优势,提出一种基于量子LID的对抗样本检测算法。首先,使用SWAP-Test量子算法一次性计算待测样本与所有样本间的相似度,避免了经典算法中的冗余计算;然后,... 为解决基于局部内在维度(LID)的对抗样本检测算法高时间复杂度问题,结合量子计算优势,提出一种基于量子LID的对抗样本检测算法。首先,使用SWAP-Test量子算法一次性计算待测样本与所有样本间的相似度,避免了经典算法中的冗余计算;然后,结合量子相位估计(QPE)算法和量子Grover搜索算法计算待测样本的局部内在维度;最后,以LID作为二分类检测器的评判依据,检测区分出对抗样本。分别使用IRIS、MNIST、股票时序数据集测试和验证所提算法,仿真实验结果表明,均能通过计算出的LID值突出对抗样本与正常样本之间的差异性,并能作为检测依据区分样本属性。理论研究证明,所提算法时间复杂度与Grover算子迭代次数及邻近样本数和训练样本数的平方根的积同一数量级,明显优于基于LID的对抗样本检测算法,实现了指数级加速。 展开更多
关键词 局部内在维度 对抗样本 二分类检测 量子计算 股价预测
下载PDF
基于特征提取和图像分类的螺旋网疵点自动检测
19
作者 王博润 张宁 卢雨正 《现代纺织技术》 北大核心 2024年第1期36-44,共9页
为了解决当前螺旋网人工疵点检测效率低、误检率高等问题,提出了一种基于分类思想的螺旋网疵点检测方法。对螺旋网图像提取多模式多尺度的LBP特征,充分表征螺旋网图像的信息,通过构建支持向量机(Support vector machine,SVM)分类器实现... 为了解决当前螺旋网人工疵点检测效率低、误检率高等问题,提出了一种基于分类思想的螺旋网疵点检测方法。对螺旋网图像提取多模式多尺度的LBP特征,充分表征螺旋网图像的信息,通过构建支持向量机(Support vector machine,SVM)分类器实现螺旋网疵点自动检测。结果表明:对于螺旋网疵点图像的局部二值模式(Local binary pattern,LBP)特征,采样半径为2,采样点个数为8时的均匀模式LBP的分类准确率优于其他模式和尺度的LBP,达到了100%,检测速度为0.48 s/张。通过对比不同的特征提取方法和分类器,验证了该文方法对于螺旋网疵点自动检测的适用性,可以实现纺织企业中螺旋网的自动化检测。 展开更多
关键词 高分子滤网 机器视觉 疵点检测 局部二值模式 支持向量机
下载PDF
基于机器学习的电弧行为识别与特征分析
20
作者 肖典 蒲柯伶 +3 位作者 褚卓楠 方乃文 武鹏博 吴斌涛 《焊接学报》 EI CAS CSCD 北大核心 2024年第5期84-89,共6页
电弧熔丝增材制造过程中电弧行为是影响零件成形精度及质量的关键因素之一,针对电弧熔丝增材制造过程中电弧无振荡、摇摆振荡以及圆周振荡3种电弧状态的监测图像,提出一种基于局部二值模式(local binary pattern,LBP)与GoogLeNet神经网... 电弧熔丝增材制造过程中电弧行为是影响零件成形精度及质量的关键因素之一,针对电弧熔丝增材制造过程中电弧无振荡、摇摆振荡以及圆周振荡3种电弧状态的监测图像,提出一种基于局部二值模式(local binary pattern,LBP)与GoogLeNet神经网络结合识别电弧模式的新方法.结果表明,通过局部二值模式获取电弧形态图像中的纹理特征,然后建立GoogLeNet神经网络模型,相比于直接对原始图像进行神经网络的训练,该方法可有效识别电弧长度、宽度以及左右最大倾角随堆积层数的变化规律,从而精准判别电弧所属状态.针对常规存在熔池、熔滴以及复杂背景等因素干扰的电弧形态图像,该方法处理后可获得更清晰的电弧边缘轮廓,更有利于将熔池、熔滴和电弧的形态边界进行划分,最终的状态识别准确率可达99.50%,为电弧熔丝增材制造过程中的电弧状态监测提供理论参考. 展开更多
关键词 电弧状态 局部二值模式 GoogLeNet神经网络 图像处理
下载PDF
上一页 1 2 65 下一页 到第
使用帮助 返回顶部