为改善应用于变参数振动钻削加工过程的仿真和参数优化的小波神经网络的逼近能力和泛化能力,提出一种小波神经网络结构和基于局部学习策略的共轭梯度(LCG:Local Con jugate G rad ient)算法,并利用灰色关联分析法对改进网络模型中的3个...为改善应用于变参数振动钻削加工过程的仿真和参数优化的小波神经网络的逼近能力和泛化能力,提出一种小波神经网络结构和基于局部学习策略的共轭梯度(LCG:Local Con jugate G rad ient)算法,并利用灰色关联分析法对改进网络模型中的3个输入权值进行选取,对网络权值、小波函数的平移因子和伸缩因子的初始值选取给出了原则。通过实验表明,该模型改善了网络性能和仿真效果。展开更多
文摘为改善应用于变参数振动钻削加工过程的仿真和参数优化的小波神经网络的逼近能力和泛化能力,提出一种小波神经网络结构和基于局部学习策略的共轭梯度(LCG:Local Con jugate G rad ient)算法,并利用灰色关联分析法对改进网络模型中的3个输入权值进行选取,对网络权值、小波函数的平移因子和伸缩因子的初始值选取给出了原则。通过实验表明,该模型改善了网络性能和仿真效果。