AZ31 Mg alloy with heterogeneous bimodal grain structure(smaller grain size of 5-20µm and coarser grain size of 100-200µm)was subjected to accumulated extrusion bonding(AEB)at 250℃combined with two-stage ar...AZ31 Mg alloy with heterogeneous bimodal grain structure(smaller grain size of 5-20µm and coarser grain size of 100-200µm)was subjected to accumulated extrusion bonding(AEB)at 250℃combined with two-stage artificial cooling in this work,viz.local water cooling and artificial cooling.The microstructure developed consecutively as a result of discontinuous dynamic recrystallization(DDRX)for the AEBed samples.{10-12}tensile twinning also played an important role for the AEB with local water cooling at the initial extrusion stage in the container.Local water cooling could further reduce the DRXed grain size to~2.1µm comparing that without water cooling.And the grain growth rate was reduced by artificial cooling out of extrusion die.Under the combination of two-stage cooling,the fine DRXed grains at sizing band were almost retained with average grain size of~2.3µm after the sheet out of extrusion die,and the unDRXed grains with high residual dislocation density accumulation were also reserved.The tensile tests results indicated that a good strength-ductility balance with a high ultimate tensile strength(319 MPa vs.412 MPa)and fracture elongation(19.9%vs.30.3%)were obtained.The strength enhancement was mainly owing to the grain refinement and local residual plastic strain reserved by the artificial cooling.The excellent ductility originated from fine DRXed microstructure and ED-tilt double peak texture.展开更多
The influence of local cooling/heating on two types of nonlinear instabilities of the high-speed boundary layer,namely,the First and Second Mode Oblique Breakdown(FMOB and SMOB),is studied using direct numerical simul...The influence of local cooling/heating on two types of nonlinear instabilities of the high-speed boundary layer,namely,the First and Second Mode Oblique Breakdown(FMOB and SMOB),is studied using direct numerical simulations.Local cooling and heating are performed at the weak and strong nonlinear stages of the two types of nonlinear instabilities.It is found that for the FMOB,local cooling at the weak nonlinear region will suppress the increase of the fundamental mode,leading to transition delay.Opposite to local cooling,local heating at the weak nonlinear region of the FMOB will promote the growth of the fundamental mode,resulting in the occurrence of more upstream transition onset.However,if local cooling and heating are performed at the strong nonlinear region,the influence of both local cooling and heating on the FMOB can be neglected.Remarkably,both local heating and cooling can delay the SMOB for different mechanisms.Performing local cooling at the weak nonlinear region of the SMOB,the low amplitude of higher spanwise wavenumber steady mode caused by local cooling lies behind transition delay.When local cooling is set at the strong nonlinear region,the low amplitude of harmonic modes around the cooling area can cause transition delay.Additionally,local heating will suppress the SMOB for the slowing amplification rate of various modes caused by the local heating at both the weak and strong nonlinear stages of the SMOB.展开更多
The precipitation responses to the radiative effects of ice clouds are investigated through analysis of five-day and hori- zontally averaged data from 2D cumulus ensemble model experiments of a pre-summer torrential p...The precipitation responses to the radiative effects of ice clouds are investigated through analysis of five-day and hori- zontally averaged data from 2D cumulus ensemble model experiments of a pre-summer torrential precipitation event. The exclusion of the radiative effects of ice clouds lowered the precipitation rate through a substantial reduction in the decrease of hydrometeors when the radiative effects of water clouds were switched on, whereas it increased the precipitation rate through hydrometeor change from an increase to a decrease when the radiative effects of ice clouds were turned off. The weakened hydrometeor decrease was associated with the enhanced longwave radiative cooling mainly through the decreases in the melt- ing of non-precipitating ice to non-precipitating water. The hydrometeor change from an increase to a decrease corresponded to the strengthened longwave radiative cooling in the upper troposphere through the weakened collection of non-precipitating water by precipitation water.展开更多
An experimental study of heat transfer characteristics in superheated steam cooled rectangular channels with parallel ribs was conducted.The distribution of the heat transfer coefficient on the rib-roughed channel was...An experimental study of heat transfer characteristics in superheated steam cooled rectangular channels with parallel ribs was conducted.The distribution of the heat transfer coefficient on the rib-roughed channel was measured by IR camera.The blockage ratio(e/Dh) of the tested channel is 0.078 and the aspect ratio(W/H) is fixed at3.0.Influences of the rib pitch-to-height ratio(P/e) and the rib angle on heat transfer for steam cooling were investigated.In this paper,the Reynolds number(Re) for steam ranges from 3070 to 14800,the rib pitch-to-height ratios were 8,10 and 12,and rib angles were 90°,75°,60°,and 45°.Based on results above,we have concluded that:In case of channels with 90° tranverse ribs,for larger rib pitch models(the rib pitch-to-height ratio=10 and12),areas with low heat transfer coefficient in front of rib is larger and its minimum is lower,while the position of the region with high heat transfer coefficient nearly remains the same,but its maximun of heat transfer coefficient becomes higher.In case of channels with inclined ribs,heat transfer coefficients on the surface decrease along the direction of each rib and show an apparent nonuniformity,consequently the regions with low Nusselt number values closely following each rib expand along the aforementioned direction and that of relative high Nusselt number values vary inversely.For a square channel with 90° ribs at Re= 14800,wider spacing rib configurations(the rib pitch-to-height ratio=10 and 12) give an area-averaged heat transfer on the rib-roughened surface about8.4%and 11.4%more than P/e=8 model,respectively;for inclined parallel ribs with different rib angles at Re=14800,the area-averaged heat transfer coefficients of 75°,60° and 45° ribbed surfaces increase by 20.1%,42.0%and 44.4%in comparison with 90° rib angle model.45° angle rib-roughened channel leads to a maximal augmentation of the area-averaged heat transfer coefficient in all research objects in this paper.展开更多
The hot and humid climates,as encountered in the southern region of China with the open housing,can adversely impact the sows undergoing heat stress during the most vulnerable period at lactation.Hence,a water-cooled ...The hot and humid climates,as encountered in the southern region of China with the open housing,can adversely impact the sows undergoing heat stress during the most vulnerable period at lactation.Hence,a water-cooled cover system(WCCs)for local cooling has essential practical value to improve productivity.The WCCs was developed for the sow crate of lactating sows separately,which performance was validated with the cooling efficiency in the sow occupied zone(SOZ)and physiological parameters.The results showed that the WCCs for the farrowing sows using aluminium plastic tubes connected in series could reach an appropriate cooling performance in adjacent units.The WCCs could decrease the SOZ air temperature by 3.0-4.5℃under the extremely hot climate when the indoor air temperature was 37℃,and maintain a suitable range(25-30℃)under the typical hot climate(<35℃).The respiration rate and skin temperature of farrowing sows had no significant difference between treatment group(WCC)and control group(sprinkle cooling)when the air temperature was below 30℃,but had a significant difference(p<0.05)when air temperature rose above 30℃.The control sows drank more during hot weather,and the feed intake was significantly lower than the sows with the WCCs(p<0.01).It was concluded that the WCCs could alleviate the heat stress of farrowing sows during typical hot climate.展开更多
基金The authors are grateful for the National Natural Science Foundation of China(No.51905366 and U1810122)Yantai high-end talent introduction"Double Hundred Plan"(2021)Key Research and Development Program of Shanxi Province(201903D421076).
文摘AZ31 Mg alloy with heterogeneous bimodal grain structure(smaller grain size of 5-20µm and coarser grain size of 100-200µm)was subjected to accumulated extrusion bonding(AEB)at 250℃combined with two-stage artificial cooling in this work,viz.local water cooling and artificial cooling.The microstructure developed consecutively as a result of discontinuous dynamic recrystallization(DDRX)for the AEBed samples.{10-12}tensile twinning also played an important role for the AEB with local water cooling at the initial extrusion stage in the container.Local water cooling could further reduce the DRXed grain size to~2.1µm comparing that without water cooling.And the grain growth rate was reduced by artificial cooling out of extrusion die.Under the combination of two-stage cooling,the fine DRXed grains at sizing band were almost retained with average grain size of~2.3µm after the sheet out of extrusion die,and the unDRXed grains with high residual dislocation density accumulation were also reserved.The tensile tests results indicated that a good strength-ductility balance with a high ultimate tensile strength(319 MPa vs.412 MPa)and fracture elongation(19.9%vs.30.3%)were obtained.The strength enhancement was mainly owing to the grain refinement and local residual plastic strain reserved by the artificial cooling.The excellent ductility originated from fine DRXed microstructure and ED-tilt double peak texture.
基金supported by the National Natural Science Foundation of China(No.11721202)。
文摘The influence of local cooling/heating on two types of nonlinear instabilities of the high-speed boundary layer,namely,the First and Second Mode Oblique Breakdown(FMOB and SMOB),is studied using direct numerical simulations.Local cooling and heating are performed at the weak and strong nonlinear stages of the two types of nonlinear instabilities.It is found that for the FMOB,local cooling at the weak nonlinear region will suppress the increase of the fundamental mode,leading to transition delay.Opposite to local cooling,local heating at the weak nonlinear region of the FMOB will promote the growth of the fundamental mode,resulting in the occurrence of more upstream transition onset.However,if local cooling and heating are performed at the strong nonlinear region,the influence of both local cooling and heating on the FMOB can be neglected.Remarkably,both local heating and cooling can delay the SMOB for different mechanisms.Performing local cooling at the weak nonlinear region of the SMOB,the low amplitude of higher spanwise wavenumber steady mode caused by local cooling lies behind transition delay.When local cooling is set at the strong nonlinear region,the low amplitude of harmonic modes around the cooling area can cause transition delay.Additionally,local heating will suppress the SMOB for the slowing amplification rate of various modes caused by the local heating at both the weak and strong nonlinear stages of the SMOB.
基金supported by the National Key Basic Research and Development Project of China(Grant Nos.2013CB430103 and 2015CB453201)the National Natural Science Foundation of China(Grant Nos.41375058 and 41530427)+1 种基金Jiangsu Natural Science Key Project(Grant No.BK20150062)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The precipitation responses to the radiative effects of ice clouds are investigated through analysis of five-day and hori- zontally averaged data from 2D cumulus ensemble model experiments of a pre-summer torrential precipitation event. The exclusion of the radiative effects of ice clouds lowered the precipitation rate through a substantial reduction in the decrease of hydrometeors when the radiative effects of water clouds were switched on, whereas it increased the precipitation rate through hydrometeor change from an increase to a decrease when the radiative effects of ice clouds were turned off. The weakened hydrometeor decrease was associated with the enhanced longwave radiative cooling mainly through the decreases in the melt- ing of non-precipitating ice to non-precipitating water. The hydrometeor change from an increase to a decrease corresponded to the strengthened longwave radiative cooling in the upper troposphere through the weakened collection of non-precipitating water by precipitation water.
基金funded by the National Natural Science Foundation of China(Funding No.51206109)
文摘An experimental study of heat transfer characteristics in superheated steam cooled rectangular channels with parallel ribs was conducted.The distribution of the heat transfer coefficient on the rib-roughed channel was measured by IR camera.The blockage ratio(e/Dh) of the tested channel is 0.078 and the aspect ratio(W/H) is fixed at3.0.Influences of the rib pitch-to-height ratio(P/e) and the rib angle on heat transfer for steam cooling were investigated.In this paper,the Reynolds number(Re) for steam ranges from 3070 to 14800,the rib pitch-to-height ratios were 8,10 and 12,and rib angles were 90°,75°,60°,and 45°.Based on results above,we have concluded that:In case of channels with 90° tranverse ribs,for larger rib pitch models(the rib pitch-to-height ratio=10 and12),areas with low heat transfer coefficient in front of rib is larger and its minimum is lower,while the position of the region with high heat transfer coefficient nearly remains the same,but its maximun of heat transfer coefficient becomes higher.In case of channels with inclined ribs,heat transfer coefficients on the surface decrease along the direction of each rib and show an apparent nonuniformity,consequently the regions with low Nusselt number values closely following each rib expand along the aforementioned direction and that of relative high Nusselt number values vary inversely.For a square channel with 90° ribs at Re= 14800,wider spacing rib configurations(the rib pitch-to-height ratio=10 and 12) give an area-averaged heat transfer on the rib-roughened surface about8.4%and 11.4%more than P/e=8 model,respectively;for inclined parallel ribs with different rib angles at Re=14800,the area-averaged heat transfer coefficients of 75°,60° and 45° ribbed surfaces increase by 20.1%,42.0%and 44.4%in comparison with 90° rib angle model.45° angle rib-roughened channel leads to a maximal augmentation of the area-averaged heat transfer coefficient in all research objects in this paper.
基金the National Natural Science Foundation of China(Grant No.31302011).
文摘The hot and humid climates,as encountered in the southern region of China with the open housing,can adversely impact the sows undergoing heat stress during the most vulnerable period at lactation.Hence,a water-cooled cover system(WCCs)for local cooling has essential practical value to improve productivity.The WCCs was developed for the sow crate of lactating sows separately,which performance was validated with the cooling efficiency in the sow occupied zone(SOZ)and physiological parameters.The results showed that the WCCs for the farrowing sows using aluminium plastic tubes connected in series could reach an appropriate cooling performance in adjacent units.The WCCs could decrease the SOZ air temperature by 3.0-4.5℃under the extremely hot climate when the indoor air temperature was 37℃,and maintain a suitable range(25-30℃)under the typical hot climate(<35℃).The respiration rate and skin temperature of farrowing sows had no significant difference between treatment group(WCC)and control group(sprinkle cooling)when the air temperature was below 30℃,but had a significant difference(p<0.05)when air temperature rose above 30℃.The control sows drank more during hot weather,and the feed intake was significantly lower than the sows with the WCCs(p<0.01).It was concluded that the WCCs could alleviate the heat stress of farrowing sows during typical hot climate.