Rheumatoid arthritis(RA)is a systemic autoimmune disease characterized by synovitis.This disease tends to recur,persist,and is difficult to cure.The pathogenesis of RA is complex.Currently,the commonly used treatments...Rheumatoid arthritis(RA)is a systemic autoimmune disease characterized by synovitis.This disease tends to recur,persist,and is difficult to cure.The pathogenesis of RA is complex.Currently,the commonly used treatments for RA—non-steroidal anti-inflammatory drugs(NSAIDs),disease-modifying anti-rheumatic drugs(DMARDs),glucocorticoids,and immunosuppressants—have notable side effects with long-term use and may be ineffective for some patients.Therefore,it is crucial to find drugs with limited side effects and significant curative effects.Xinjiang's local characteristic drugs have a long history,abundant resources,and are known for their safety and effectiveness in treating RA.In recent years,many studies have reported on the mechanisms of action and therapeutic effects of Xinjiang's local characteristic drugs on RA.This article reviews the pathogenesis of RA,as well as the research progress and treatment characteristics of Xinjiang-featured drugs.展开更多
Immunotherapy has attracted tremendous attention due to the remarkable clinical successes for treating a broad spectrum of tumors. One challenge for cancer immunotherapy is the inability to control localization and su...Immunotherapy has attracted tremendous attention due to the remarkable clinical successes for treating a broad spectrum of tumors. One challenge for cancer immunotherapy is the inability to control localization and sustain concentrations of therapeutics at tumor sites. Local drug delivery systems(LDDSs) like the biomaterial scaffold-based drug delivery systems have emerged as a promising approach for delivering immunotherapeutic agents facilely and intensively in situ with reduced systemic toxicity. In this review, recent advances in biomaterial scaffold-based LDDSs for the administration of immunotherapeutic agents including vaccines, immunomodulators, and immune cells are summarized. Moreover, codelivery systems are also evaluated for local immunotherapy-involving combination anti-tumor therapy,including chemotherapy-immunotherapy, photothermal-immunotherapy, and other combination therapies. Finally, the current challenges and future perspectives on the development of next-generation LDDSs for cancer immunotherapy are discussed.展开更多
Dose-dense chemotherapy is the preferred first-line therapy for triple-negative breast cancer(TNBC),a highly aggressive disease with a poor prognosis.This treatment uses the same drug doses as conventional chemotherap...Dose-dense chemotherapy is the preferred first-line therapy for triple-negative breast cancer(TNBC),a highly aggressive disease with a poor prognosis.This treatment uses the same drug doses as conventional chemotherapy but with shorter dosing intervals,allowing for promising clinical outcomes with intensive treatment.However,the frequent systemic administration used for this treatment results in systemic toxicity and low patient compliance,limiting therapeutic efficacy and clinical benefit.Here,we report local dose-dense chemotherapy to treat TNBC by implanting 3D printed devices with timeprogrammed pulsatile release profiles.The implantable device can control the time between drug releases based on its internal microstructure design,which can be used to control dose density.The device is made of biodegradable materials for clinical convenience and designed for minimally invasive implantation via a trocar.Dose density variation of local chemotherapy using programmable release enhances anti-cancer effects in vitro and in vivo.Under the same dose density conditions,device-based chemotherapy shows a higher anticancer effect and less toxic response than intratumoral injection.We demonstrate local chemotherapy utilizing the implantable device that simulates the drug dose,number of releases,and treatment duration of the dose-dense AC(doxorubicin and cyclophosphamide)regimen preferred for TNBC treatment.Dose density modulation inhibits tumor growth,metastasis,and the expression of drug resistance-related proteins,including p-glycoprotein and breast cancer resistance protein.To the best of our knowledge,local dose-dense chemotherapy has not been reported,and our strategy can be expected to be utilized as a novel alternative to conventional therapies and improve anti-cancer efficiency.展开更多
With the support by the National Natural Science Foundation of China,the research group led by Prof.Jiang Gangbiao(蒋刚彪)at the Department of Pharmaceutical Engineering,College of Materials and Energy,South China Agr...With the support by the National Natural Science Foundation of China,the research group led by Prof.Jiang Gangbiao(蒋刚彪)at the Department of Pharmaceutical Engineering,College of Materials and Energy,South China Agricultural University,in collaboration with the research group led by Prof.Yuan展开更多
Objective: To investigate the therapeutic effects of vitamine B 6 (Vit B 6) and Xuefu Zhuyu Decoction (血府逐瘀汤,XFZY, for activating blood circulation to remove stasis) in patients with localized scleroderma(LSD)....Objective: To investigate the therapeutic effects of vitamine B 6 (Vit B 6) and Xuefu Zhuyu Decoction (血府逐瘀汤,XFZY, for activating blood circulation to remove stasis) in patients with localized scleroderma(LSD). Methods: Thirty-three patients were treated with XFZY and Vit B 6, with 15 cases taking orally prednisone acetate and 20 healthy volunteers as the control. Their level of soluble interleukin-2 receptor (sIL-2R) and tumor necrosis factor-α (TNF-α) in the patients with LSD before and after treatment were observed. Results: The level of sIL-2R and TNF-α in the serum from the patients with LSD were higher than those of healthy volunteers ( P <0.01). After treatment with Vit B 6 and XFZY, the level of sIL-2R and TNF-α from the patients with LSD decreased significantly ( P <0.01), but there were no difference between the group taking Vit B 6 plus XFZY and the group given prednisone. Conclusion: The activating blood circulation to remove stasis approach in treating LSD with integrative Chinese and Western drugs got better results, and metabolic disorder of tryptophan might be correlated with the etiology of LSD.展开更多
Axonal regeneration following surgical nerve repair is slow and often incomplete,resulting in poor functional recovery which sometimes contributes to lifelong disability.Currently,there are no FDA-approved therapies a...Axonal regeneration following surgical nerve repair is slow and often incomplete,resulting in poor functional recovery which sometimes contributes to lifelong disability.Currently,there are no FDA-approved therapies available to promote nerve regeneration.Tacrolimus accelerates axonal regeneration,but systemic side effects presently outweigh its potential benefits for peripheral nerve surgery.The authors describe herein a biodegradable polyurethane-based drug delivery system for the sustained local release of tacrolimus at the nerve repair site,with suitable properties for scalable production and clinical application,aiming to promote nerve regeneration and functional recovery with minimal systemic drug exposure.Tacrolimus is encapsulated into co-axially electrospun polycarbonate-urethane nanofibers to generate an implantable nerve wrap that releases therapeutic doses of bioactive tacrolimus over 31 days.Size and drug loading are adjustable for applications in small and large caliber nerves,and the wrap degrades within 120 days into biocompatible byproducts.Tacrolimus released from the nerve wrap promotes axon elongation in vitro and accelerates nerve regeneration and functional recovery in preclinical nerve repair models while off-target systemic drug exposure is reduced by 80%compared with systemic delivery.Given its surgical suitability and preclinical efficacy and safety,this system may provide a readily translatable approach to support axonal regeneration and recovery in patients undergoing nerve surgery.展开更多
Objectives To assess thefeasibility, efficiency and tissue distribution of local delivered c - myc antisense oligonucleotides (ASODN) by implanted gelatin coated Platinium - Iridium (Pt -Ir) stent. Methods Gelatin coa...Objectives To assess thefeasibility, efficiency and tissue distribution of local delivered c - myc antisense oligonucleotides (ASODN) by implanted gelatin coated Platinium - Iridium (Pt -Ir) stent. Methods Gelatin coated Pt - Ir stent which absorbed carboxyfluorescein - 5 - succimidyl ester (FAM) labeled c - myc ASODN were implanted in the right carotid arteries of 6 rabbits under vision. Blood samples were collected at the indicated times. The target artery, left carotid artery, heart , liver and kidney obtained at 45 minutes , 2 hours and 6 hours. The concentration of c - myc ASODN in plasma and tissues were determined by Thin Layer Fluorome-try. Tissue distribution of c - myc ASODN were assessed by fluorescence microscopy. Results At 45 min, 2 h, 6 h, the concentration of FAM labeled c -myc ASODN in target artery was 244. 39, 194. 44, 126. 94(μg/g tissues) respectively, and the delivery efficiency were 44. 4% , 35. 4% and 23. 1% respectively. At the same indicated time point, the plasma concentration was 8. 41, 5. 83, 14. 75 (μg/ml) respectively. Therefore c - myc ASODN concentrations in the target vessel were 29, 33 and 9 -fold higher than that in the plasma. There was circumferential distribution of labeled c - myc in the area of highest fluorescein coinciding with the site of medial dissecting from stent-ing, and the label was most intense in target vessel media harvested at 45 min time point and then dispersed to adventitia. Conclusions Gelatin coated Pt - Ir stent mediated local delivery of c - myc ASODN is feasible and efficient. The localization of ASODN is mainly in target vessel wall.展开更多
基金National Natural Science Foundation of China(No.82160841)Xinjiang Uygur Autonomous Region Natural Science Foundation Key Projects(2022D01D65).
文摘Rheumatoid arthritis(RA)is a systemic autoimmune disease characterized by synovitis.This disease tends to recur,persist,and is difficult to cure.The pathogenesis of RA is complex.Currently,the commonly used treatments for RA—non-steroidal anti-inflammatory drugs(NSAIDs),disease-modifying anti-rheumatic drugs(DMARDs),glucocorticoids,and immunosuppressants—have notable side effects with long-term use and may be ineffective for some patients.Therefore,it is crucial to find drugs with limited side effects and significant curative effects.Xinjiang's local characteristic drugs have a long history,abundant resources,and are known for their safety and effectiveness in treating RA.In recent years,many studies have reported on the mechanisms of action and therapeutic effects of Xinjiang's local characteristic drugs on RA.This article reviews the pathogenesis of RA,as well as the research progress and treatment characteristics of Xinjiang-featured drugs.
基金supported by the National Natural Science Foundation of China (31900945)Basic Research Program of Shenzhen(JCYJ20170412111100742, JCYJ20180507182413022)+2 种基金Fok YingTong Education Foundation for Young Teachers in the Higher Education Institutions of China (161032)Postdoctoral Science Foundation of China (2018M643175)Guangdong Province Natural Science Foundation of Major Basic Research and Cultivation Project (2018B030308003)。
文摘Immunotherapy has attracted tremendous attention due to the remarkable clinical successes for treating a broad spectrum of tumors. One challenge for cancer immunotherapy is the inability to control localization and sustain concentrations of therapeutics at tumor sites. Local drug delivery systems(LDDSs) like the biomaterial scaffold-based drug delivery systems have emerged as a promising approach for delivering immunotherapeutic agents facilely and intensively in situ with reduced systemic toxicity. In this review, recent advances in biomaterial scaffold-based LDDSs for the administration of immunotherapeutic agents including vaccines, immunomodulators, and immune cells are summarized. Moreover, codelivery systems are also evaluated for local immunotherapy-involving combination anti-tumor therapy,including chemotherapy-immunotherapy, photothermal-immunotherapy, and other combination therapies. Finally, the current challenges and future perspectives on the development of next-generation LDDSs for cancer immunotherapy are discussed.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Ministry of Science and ICT(MSIT)(No.2021R1A2C2012808)Technology Innovation Program(Alchemist Project)(No.20012378)funded by the Ministry of Trade,Industry&Energy(MOTIE),South Korea.
文摘Dose-dense chemotherapy is the preferred first-line therapy for triple-negative breast cancer(TNBC),a highly aggressive disease with a poor prognosis.This treatment uses the same drug doses as conventional chemotherapy but with shorter dosing intervals,allowing for promising clinical outcomes with intensive treatment.However,the frequent systemic administration used for this treatment results in systemic toxicity and low patient compliance,limiting therapeutic efficacy and clinical benefit.Here,we report local dose-dense chemotherapy to treat TNBC by implanting 3D printed devices with timeprogrammed pulsatile release profiles.The implantable device can control the time between drug releases based on its internal microstructure design,which can be used to control dose density.The device is made of biodegradable materials for clinical convenience and designed for minimally invasive implantation via a trocar.Dose density variation of local chemotherapy using programmable release enhances anti-cancer effects in vitro and in vivo.Under the same dose density conditions,device-based chemotherapy shows a higher anticancer effect and less toxic response than intratumoral injection.We demonstrate local chemotherapy utilizing the implantable device that simulates the drug dose,number of releases,and treatment duration of the dose-dense AC(doxorubicin and cyclophosphamide)regimen preferred for TNBC treatment.Dose density modulation inhibits tumor growth,metastasis,and the expression of drug resistance-related proteins,including p-glycoprotein and breast cancer resistance protein.To the best of our knowledge,local dose-dense chemotherapy has not been reported,and our strategy can be expected to be utilized as a novel alternative to conventional therapies and improve anti-cancer efficiency.
文摘With the support by the National Natural Science Foundation of China,the research group led by Prof.Jiang Gangbiao(蒋刚彪)at the Department of Pharmaceutical Engineering,College of Materials and Energy,South China Agricultural University,in collaboration with the research group led by Prof.Yuan
文摘Objective: To investigate the therapeutic effects of vitamine B 6 (Vit B 6) and Xuefu Zhuyu Decoction (血府逐瘀汤,XFZY, for activating blood circulation to remove stasis) in patients with localized scleroderma(LSD). Methods: Thirty-three patients were treated with XFZY and Vit B 6, with 15 cases taking orally prednisone acetate and 20 healthy volunteers as the control. Their level of soluble interleukin-2 receptor (sIL-2R) and tumor necrosis factor-α (TNF-α) in the patients with LSD before and after treatment were observed. Results: The level of sIL-2R and TNF-α in the serum from the patients with LSD were higher than those of healthy volunteers ( P <0.01). After treatment with Vit B 6 and XFZY, the level of sIL-2R and TNF-α from the patients with LSD decreased significantly ( P <0.01), but there were no difference between the group taking Vit B 6 plus XFZY and the group given prednisone. Conclusion: The activating blood circulation to remove stasis approach in treating LSD with integrative Chinese and Western drugs got better results, and metabolic disorder of tryptophan might be correlated with the etiology of LSD.
基金supported by the German Research Foundation(DA 2255/1-1to SCD)+4 种基金a SickKids Research Training Competition(RESTRACOMP)Graduate Scholarship(to KJWS)an Ontario Graduate Scholarship(to KJWS)a grant from Natural Sciences and Engineering Research Council of Canada(NSERC)(to KJWS)a Kickstarter grant from the Institute of Biomedical Engineering(BME)at the University of Toronto(to KJWS)the Abe Frank Fund from the Riley’s Children Foundation(GHB)。
文摘Axonal regeneration following surgical nerve repair is slow and often incomplete,resulting in poor functional recovery which sometimes contributes to lifelong disability.Currently,there are no FDA-approved therapies available to promote nerve regeneration.Tacrolimus accelerates axonal regeneration,but systemic side effects presently outweigh its potential benefits for peripheral nerve surgery.The authors describe herein a biodegradable polyurethane-based drug delivery system for the sustained local release of tacrolimus at the nerve repair site,with suitable properties for scalable production and clinical application,aiming to promote nerve regeneration and functional recovery with minimal systemic drug exposure.Tacrolimus is encapsulated into co-axially electrospun polycarbonate-urethane nanofibers to generate an implantable nerve wrap that releases therapeutic doses of bioactive tacrolimus over 31 days.Size and drug loading are adjustable for applications in small and large caliber nerves,and the wrap degrades within 120 days into biocompatible byproducts.Tacrolimus released from the nerve wrap promotes axon elongation in vitro and accelerates nerve regeneration and functional recovery in preclinical nerve repair models while off-target systemic drug exposure is reduced by 80%compared with systemic delivery.Given its surgical suitability and preclinical efficacy and safety,this system may provide a readily translatable approach to support axonal regeneration and recovery in patients undergoing nerve surgery.
文摘Objectives To assess thefeasibility, efficiency and tissue distribution of local delivered c - myc antisense oligonucleotides (ASODN) by implanted gelatin coated Platinium - Iridium (Pt -Ir) stent. Methods Gelatin coated Pt - Ir stent which absorbed carboxyfluorescein - 5 - succimidyl ester (FAM) labeled c - myc ASODN were implanted in the right carotid arteries of 6 rabbits under vision. Blood samples were collected at the indicated times. The target artery, left carotid artery, heart , liver and kidney obtained at 45 minutes , 2 hours and 6 hours. The concentration of c - myc ASODN in plasma and tissues were determined by Thin Layer Fluorome-try. Tissue distribution of c - myc ASODN were assessed by fluorescence microscopy. Results At 45 min, 2 h, 6 h, the concentration of FAM labeled c -myc ASODN in target artery was 244. 39, 194. 44, 126. 94(μg/g tissues) respectively, and the delivery efficiency were 44. 4% , 35. 4% and 23. 1% respectively. At the same indicated time point, the plasma concentration was 8. 41, 5. 83, 14. 75 (μg/ml) respectively. Therefore c - myc ASODN concentrations in the target vessel were 29, 33 and 9 -fold higher than that in the plasma. There was circumferential distribution of labeled c - myc in the area of highest fluorescein coinciding with the site of medial dissecting from stent-ing, and the label was most intense in target vessel media harvested at 45 min time point and then dispersed to adventitia. Conclusions Gelatin coated Pt - Ir stent mediated local delivery of c - myc ASODN is feasible and efficient. The localization of ASODN is mainly in target vessel wall.