The relationship between the microstructure and toughness of welding heat-affected zone in XSO grade pipeline steels is studied. It is found that the intercritical reheated coarse-grained heat-affected zone (ICCGHAZ...The relationship between the microstructure and toughness of welding heat-affected zone in XSO grade pipeline steels is studied. It is found that the intercritical reheated coarse-grained heat-affected zone (ICCGHAZ) of experimental steels has the lowest toughness values when the secondary peak temperature is at intercritical ( α + γ ) region during multi-pass welding. The local embrittlement is mainly attributed to the morphology, amount and size of M-A constituent. It is also found that the microstructural inhabitanee at ICCGHAZ has a deleterious effect on the toughness. On the basis of above experimental results, it is suggested that the local embrittlement should be prevented by using pre-heating thermal cycle which could eliminate the microstructural inhabitance and using post-heating thermal cycle which could improve the morphology, amount and size of MA constituent.展开更多
基金This work was supported by the National Natural Science Foundation of China(No. 50874090).
文摘The relationship between the microstructure and toughness of welding heat-affected zone in XSO grade pipeline steels is studied. It is found that the intercritical reheated coarse-grained heat-affected zone (ICCGHAZ) of experimental steels has the lowest toughness values when the secondary peak temperature is at intercritical ( α + γ ) region during multi-pass welding. The local embrittlement is mainly attributed to the morphology, amount and size of M-A constituent. It is also found that the microstructural inhabitanee at ICCGHAZ has a deleterious effect on the toughness. On the basis of above experimental results, it is suggested that the local embrittlement should be prevented by using pre-heating thermal cycle which could eliminate the microstructural inhabitance and using post-heating thermal cycle which could improve the morphology, amount and size of MA constituent.