We theoretically investigate surface plasmon resonance properties in Au and Ag cubic nanoparticles and find a novel plasmonic mode that exhibits simultaneous low extinction and high local field enhancement properties....We theoretically investigate surface plasmon resonance properties in Au and Ag cubic nanoparticles and find a novel plasmonic mode that exhibits simultaneous low extinction and high local field enhancement properties. We analyse this mode from different aspects by looking at the distribution patterns of local field intensity, energy flux, absorption and charge density. We find that in the mode the polarized charge is highly densified in a very limited volume around the corner of the nanocube and results in very strong local field enhancement. Perturbations of the incident energy flux and light absorption are also strongly localized in this small volume of the corner region, leading to both low absorption and low scattering cross section. As a result, the extinction is low for the mode. Metal nanoparticles involving such peculiar modes may be useful for constructing nonlinear compound materials with low linear absorption and high nonlinearity.展开更多
This paper studies the electromagnetic response of a coherently driven dense atomic ensemble to a weak probe. It finds that negative refraction with little absorption may be achieved in the presence of local-field enh...This paper studies the electromagnetic response of a coherently driven dense atomic ensemble to a weak probe. It finds that negative refraction with little absorption may be achieved in the presence of local-field enhanced interaction and dynamically induced chirality. The complex refractive index governing the probe refraction and absorption depends critically on the atomic density, the steady population distribution, the coherence dephasings, and the frequency de- tunings, and is also sensitive to the phase of the driving field because the photonic transition paths form a close loop. Thus, it can periodically tune the refractive index at a fixed frequency from negative to positive values and vice versa just by modulating the driving phase. Moreover, the optimal negative refraction is found to be near the probe magnetic resonance, which then requires the electric fields of the probe and the drive being on two-photon resonance due to the dipole synchronisation.展开更多
A conventional global contrast enhancement is difficult to apply in various images because image quality and contrast enhancement are dependent on image characteristics largely. And a local contrast enhancement not on...A conventional global contrast enhancement is difficult to apply in various images because image quality and contrast enhancement are dependent on image characteristics largely. And a local contrast enhancement not only causes a washed-out effect, but also blocks. To solve these drawbacks, this paper derives an optimal global equalization function with variable size block based local contrast enhancement. The optimal equalization function makes it possible to get a good quality image through the global contrast enhancement. The variable size block segmentation is firstly exeoated using intensity differences as a measure of similarity. In the second step, the optimal global equalization function is obtained from the enhanced contrast image having variable size blocks. Conformed experiments have showed that the proposed algorithm produces a visually comfortable result image.展开更多
Besides the diverse investigations on the interactions between intense laser fields and molecular systems,extensive research has been recently dedicated to exploring the response of nanosystems excited by well-tailore...Besides the diverse investigations on the interactions between intense laser fields and molecular systems,extensive research has been recently dedicated to exploring the response of nanosystems excited by well-tailored femtosecond laser fields.Due to the fact that nanostructures hold peculiar effects when illuminated by laser pulses,the underlying mechanisms and the corresponding potential applications can make significant improvements in both fundamental research and development of novel techniques.In this review,we provide a summarization of the strong field ionization occurring on the surface of nanosystems.The molecules attached to the nanoparticle surface perform as the precursor in the ionization and excitation of the whole nanosystem,the fundamental processes of which are yet to be discovered.We discuss the influence on nanoparticle constituents,geometric shapes and sizes,as well as the specific waveforms of the excitation laser fields.The intriguing characteristics observed in surface ion emission reflect how enhanced near field affects the localized ionizations and nanoplasma expansions,thereby paving the way for further precision controls on the light-and-matter interactions in the extreme spatial temporal levels.展开更多
Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than t...Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.展开更多
Periodontitis is an inflammatory autoimmune disease. Treatment should alleviate inflammation, regulate the immune reaction and promote periodontal tissue regeneration. Icariin is the main active ingredient of Epimedii...Periodontitis is an inflammatory autoimmune disease. Treatment should alleviate inflammation, regulate the immune reaction and promote periodontal tissue regeneration. Icariin is the main active ingredient of Epimedii Folium, and it is a promising compound for the enhancement of mesenchymal stem cell function, promotion of bone formation, inhibition of bone resorption, alleviation of inflammation and regulation of immunity. The study investigated the effect of icariin on periodontal tissue regeneration in a minipig model of periodontitis. The minipig model of periodontitis was established. Icariin was injected locally. The periodontal clinical assessment index, a computed tomography(CT) scan, histopathology and enzyme-linked immune sorbent assay(ELISA)were used to evaluate the effects of icariin. Quantitative analysis results 12 weeks post-injection demonstrated that probing depth,gingival recession, attachment loss and alveolar bone regeneration values were(3.72 ± 1.18) mm vs.(6.56 ± 1.47) mm,(1.67 ± 0.59)mm vs.(2.38 ± 0.61) mm,(5.56 ± 1.29) mm vs.(8.61 ± 1.72) mm, and(25.65 ± 5.13) mm3 vs.(9.48 ± 1.78) mm3 in the icariin group and0.9% NaCl group, respectively. The clinical assessment, CT scan, and histopathology results demonstrated significant enhancement of periodontal tissue regeneration in the icariin group compared to the 0.9% NaCl group. The ELISA results suggested that the concentration of interleukin-1 beta(IL-1β) in the icariin group was downregulated compared to the 0.9% NaCl group, which indicates that local injection of icariin relieved local inflammation in a minipig model of periodontitis. Local injection of icariin promoted periodontal tissue regeneration and exerted anti-inflammatory and immunomodulatory function. These results support the application of icariin for the clinical treatment of periodontitis.展开更多
The keto-enol tautomerization of ethyl acetoacetate (EAA) in supercritical CO2-ethanol mixture has been investigated at 308.15 K and at different pressures using UV-Visspectroscopy. A method for calculating the local ...The keto-enol tautomerization of ethyl acetoacetate (EAA) in supercritical CO2-ethanol mixture has been investigated at 308.15 K and at different pressures using UV-Visspectroscopy. A method for calculating the local composition about EAA has been developed based on the relationship between the equilibrium constant and dielectric property of the mixing solvent. The results indicate that the local concentration of ethanol surrounding EAA is much higher than that in the bulk.展开更多
Based on the one-dimensional periodic and Fibonacci-like waveguide arrays,we experimentally investigate localized quantum walks(QWs),both in the linear and nonlinear regimes.Unlike the ballistic transport behavior in ...Based on the one-dimensional periodic and Fibonacci-like waveguide arrays,we experimentally investigate localized quantum walks(QWs),both in the linear and nonlinear regimes.Unlike the ballistic transport behavior in conventional random QWs,localization of QWs is obtained in the Fibonacci-like waveguide arrays both theoretically and experimentally.Moreover,we verify the enhancement of the localization through nonlinearity-induced effect.Our work provides a valid way to study localization enhancement in QWs,which might broaden the understanding of nonlinearity-induced behaviors in quasiperiodic systems.展开更多
In thefield of diagnosis of medical images the challenge lies in tracking and identifying the defective cells and the extent of the defective region within the complex structure of a brain cavity.Locating the defective...In thefield of diagnosis of medical images the challenge lies in tracking and identifying the defective cells and the extent of the defective region within the complex structure of a brain cavity.Locating the defective cells precisely during the diagnosis phase helps tofight the greatest exterminator of mankind.Early detec-tion of these defective cells requires an accurate computer-aided diagnostic system(CAD)that supports early treatment and promotes survival rates of patients.An ear-lier version of CAD systems relies greatly on the expertise of radiologist and it con-sumed more time to identify the defective region.The manuscript takes the efficacy of coalescing features like intensity,shape,and texture of the magnetic resonance image(MRI).In the Enhanced Feature Fusion Segmentation based classification method(EEFS)the image is enhanced and segmented to extract the prominent fea-tures.To bring out the desired effect the EEFS method uses Enhanced Local Binary Pattern(EnLBP),Partisan Gray Level Co-occurrence Matrix Histogram of Oriented Gradients(PGLCMHOG),and iGrab cut method to segment image.These prominent features along with deep features are coalesced to provide a single-dimensional fea-ture vector that is effectively used for prediction.The coalesced vector is used with the existing classifiers to compare the results of these classifiers with that of the gen-erated vector.The generated vector provides promising results with commendably less computatio nal time for pre-processing and classification of MR medical images.展开更多
Deep learning has risen in popularity as a face recognition technology in recent years.Facenet,a deep convolutional neural network(DCNN)developed by Google,recognizes faces with 128 bytes per face.It also claims to ha...Deep learning has risen in popularity as a face recognition technology in recent years.Facenet,a deep convolutional neural network(DCNN)developed by Google,recognizes faces with 128 bytes per face.It also claims to have achieved 99.96%on the reputed Labelled Faces in the Wild(LFW)dataset.How-ever,the accuracy and validation rate of Facenet drops down eventually,there is a gradual decrease in the resolution of the images.This research paper aims at developing a new facial recognition system that can produce a higher accuracy rate and validation rate on low-resolution face images.The proposed system Extended Openface performs facial recognition by using three different features i)facial landmark ii)head pose iii)eye gaze.It extracts facial landmark detection using Scattered Gated Expert Network Constrained Local Model(SGEN-CLM).It also detects the head pose and eye gaze using Enhanced Constrained Local Neur-alfield(ECLNF).Extended openface employs a simple Support Vector Machine(SVM)for training and testing the face images.The system’s performance is assessed on low-resolution datasets like LFW,Indian Movie Face Database(IMFDB).The results demonstrated that Extended Openface has a better accuracy rate(12%)and validation rate(22%)than Facenet on low-resolution images.展开更多
The ultraslow-spreading Southwest Indian Ridge (SWIR) to the east of the Melville fracture zone is characterized by very low melt supply and intensive tectonic activity. Due to its weak thermal budget and extremely ...The ultraslow-spreading Southwest Indian Ridge (SWIR) to the east of the Melville fracture zone is characterized by very low melt supply and intensive tectonic activity. Due to its weak thermal budget and extremely slow spreading rate, the easternmost SWIR was considered to be devoid of hydrothermal activity until the discovery of the inactive Mt. lourdanne hydrothermal field (27°51'S, 63°56'E) in 1998. During the COMRA DYl15-20 cruise in 2009, two additional hydrothermal fields (i.e., the Tiancheng (27°51'S, 63°55'E) and Tianzuo (27°57'S, 63°32'E) fields) were discovered. Further detailed investigations of these two hydrothermal sites were conducted by Chinese manned submersible liaolong in 2014-2015. The Tiancheng filed can he characterized as a low- temperature (up to 13.2℃) diffuse flow hydrothermal field, and is hosted by fractured basalts with hydrothermal fauna widespread on the seafloor. The Tianzuo hydrothermal field is an inactive sulfide field, which is hosted by ultramafic rocks and controlled by detachment fault. The discovery of the three hydrothermal fields around Segment #11 which receives more melt than the regional average, provided evidence for local enhanced magmatism providing heat source to drive hydrothermal circulation. We further imply that hydrothermal activity and sulfide deposits may be rather promising along the easternmost SWIR.展开更多
The present work experimentally and numerically investigates the local heat transfer enhancement induced by a piezoelectric fan interacting with a cross flow in a local heated channel.The piezoelectric fan is placed a...The present work experimentally and numerically investigates the local heat transfer enhancement induced by a piezoelectric fan interacting with a cross flow in a local heated channel.The piezoelectric fan is placed along the flow direction and tested under different amplitudes and flow rates.In the simulations,a spring-based smoothing method and a local remeshing technique are used to handle the moving boundary problems.Hybrid mesh is used to reduce the size of dynamic mesh domain and to improve computational efficiency.The experimental and numerical values of the time-averaged mean Nusselt number are found to be in good agreement,with deviations of less than 10%.The experimental result shows that the heat transfer performance of the heated surfaces is substantially enhanced with a vibrating piezoelectric fan.The numerical result shows that the heat transfer enhancement comes from the strong longitudinal vortex pairs generated by the piezoelectric fan,which significantly promote heat exchange between the main flow and the near-wall flow.In the case of a=0.66(a is the dimensionless amplitude)and Re=1820,the enhancement ratio of the time-averaged mean Nusselt number reaches 119.9%.展开更多
The enhancement characteristics of the local field in the surface plasmon nanocavities are investigated numerically. The cavity is constructed by placing a defect structure in the thickness-modulated metal-insulator-m...The enhancement characteristics of the local field in the surface plasmon nanocavities are investigated numerically. The cavity is constructed by placing a defect structure in the thickness-modulated metal-insulator-metal waveguide Bragg gratings. The characteristic impedance based transfer matrix method is used to calculate the transmission spectra and the resonant wavelength of the cavities with various geometric parameters. The finite-difference time- domain method is used to obtain the field pattern of the resonant mode and validate the results of the transfer matrix method. The calculation and simulation results reveal the existence of resonant wavelength shift and intensity variation with structural parameters, such as the modulation period of the gratings, the length and the width of the defect structure. Both numerical analysis and theoretical interpretation on these phenomena are given in details.展开更多
The solvatochromic behavior of acetone in supercritical CO? was investigated from 75 bar to 239 bar and at 318.15K. A clustering model is proposed to investigate the formation of solute-solvent and solute-solute clust...The solvatochromic behavior of acetone in supercritical CO? was investigated from 75 bar to 239 bar and at 318.15K. A clustering model is proposed to investigate the formation of solute-solvent and solute-solute clusters, based on the solvatochromic study and some reasonable assumptions. At lower pressures, there were more than one solute molecules in one cluster. At higher pressures, however, each cluster only contained one solute and the clustering of solute-solvent was dominant.展开更多
In this paper, we propose a locally enhanced PCANet neural network for fine-grained classification of vehicles. The proposed method adopts the PCANet unsupervised network with a smaller number of layers and simple par...In this paper, we propose a locally enhanced PCANet neural network for fine-grained classification of vehicles. The proposed method adopts the PCANet unsupervised network with a smaller number of layers and simple parameters compared with the majority of state-of-the-art machine learning methods. It simplifies calculation steps and manual labeling, and enables vehicle types to be recognized without time-consuming training. Experimental results show that compared with the traditional pattern recognition methods and the multi-layer CNN methods, the proposed method achieves optimal balance in terms of varying scales of sample libraries, angle deviations, and training speed. It also indicates that introducing appropriate local features that have different scales from the general feature is very instrumental in improving recognition rate. The 7-angle in 180° (12-angle in 360°) classification modeling scheme is proven to be an effective approach, which can solve the problem of suffering decrease in recognition rate due to angle deviations, and add the recognition accuracy in practice.展开更多
The surface enhanced fluorescence effect of acridine orange fluorophore in the proximity of Au nanoparticles has been investigated experimentally in the system of aqueous solution.Significant enhancement of the fluore...The surface enhanced fluorescence effect of acridine orange fluorophore in the proximity of Au nanoparticles has been investigated experimentally in the system of aqueous solution.Significant enhancement of the fluorescence intensity was observed when the system was excited with 532 nm or 442 nm CW lasers.The influence of the distances between neighboring Au particles as well as that between the fluorophore molecules and the Au surface were explored experimentally.The results demonstrated that a compact distribution of metallic particles was able to produce stronger fluorescence enhancement.Proper separation between the fluorophore molecules and the metal surface was favorable for a better enhancement.展开更多
Silver nanoparticles(Ag NPs) were successfully assembled in porous anodic alumina(AAO) templates via a green silver mirror reaction.The Ag NPs/AAO composite templates then were characterized by field emission scan...Silver nanoparticles(Ag NPs) were successfully assembled in porous anodic alumina(AAO) templates via a green silver mirror reaction.The Ag NPs/AAO composite templates then were characterized by field emission scanning electron microscopy(FESEM),energy-dispersive X-ray microanalysis(EDX),and X-ray diffraction(XRD).Furthermore,the photoluminescence(PL) properties were also investigated.Compared with the blank AAO,the PL intensity of Ag NPs/AAO templates are enhanced and the maximum enhancement is 2.58 times.Based on the local electric field enhancement effect,the theoretical values were also deduced,which are basically coincident with the experimental.展开更多
Coherent anti-Stokes Raman scattering spectroscopy(CARS) is a well-known detecting tool in biosensing and nonlinear spectroscopy. It can provide a non-invasive alternative without the need for exogenous labels,while...Coherent anti-Stokes Raman scattering spectroscopy(CARS) is a well-known detecting tool in biosensing and nonlinear spectroscopy. It can provide a non-invasive alternative without the need for exogenous labels,while the enhancement factor for surface plasmon resonances(SPR) are extensively used to increase the local field close to the oscillators and which can obtain high enhancement. In this work, we investigate the enhancement factor of our structure for surface-enhanced coherent anti-Stokes Raman scattering. The absorption spectrum of the structure has been studied, a wide range of absorption has been realized. The enhancement can be as high as 10^(16) over standard CARS. Our design is very useful for improving the enhancement factor of surface-enhanced coherent anti-Stokes Raman scattering.展开更多
The difficulty of obtaining high-intensity localized light spots for optical probes leads to their lack of good applications in nanoimaging.Here we demonstrate a Fabry–Pérot resonance flat-based plasmonic fiber prob...The difficulty of obtaining high-intensity localized light spots for optical probes leads to their lack of good applications in nanoimaging.Here we demonstrate a Fabry–Pérot resonance flat-based plasmonic fiber probe(FPFP).The simulation results show that the probe can obtain a nanofocusing spot at the tip with the radially polarized mode.The Fabry–Pérot interference structure is used to control the plasmon propagation on the surface of the probe,it effectively improves the local spot intensity at the tip.Furthermore,the experimental results verify that the FPFP(tip curvature radius is 20 nm)prepared by chemical etching method can obtain a nanofocusing spot at the tip.The nanoimaging of the gold slit structure demonstrates the nanoimaging capability of the FPFP,the 36.9 nm slit width is clearly identified by the FPFP.展开更多
Localized surface plasmon resonance(LSPR)can be supported by metallic nanoparticles and engineered nanostructures.An understanding of the spatially resolved near-field properties and dynamics of LSPR is important,but ...Localized surface plasmon resonance(LSPR)can be supported by metallic nanoparticles and engineered nanostructures.An understanding of the spatially resolved near-field properties and dynamics of LSPR is important,but remains experimentally challenging.We report experimental studies toward this aim using photoemission electron microscopy(PEEM)with high spatial resolution of sub-10 nm.Various engineered gold nanostructure arrays(such as rods,nanodisk-like particles and dimers)are investigated via PEEM using near-infrared(NIR)femtosecond laser pulses as the excitation source.When the LSPR wavelengths overlap the spectrum of the femtosecond pulses,the LSPR is efficiently excited and promotes multiphoton photoemission,which is correlated with the local intensity of the metallic nanoparticles in the near field.Thus,the local field distribution of the LSPR on different Au nanostructures can be directly explored and discussed using the PEEM images.In addition,the dynamics of the LSPR is studied by combining interferometric time-resolved pump-probe technique and PEEM.Detailed information on the oscillation and dephasing of the LSPR field can be obtained.The results identify PEEM as a powerful tool for accessing the near-field mapping and dynamic properties of plasmonic nanostructures.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60736041 and 10874238)the National Key Basic Research Special Foundation of China (Grant No. 2007CB613205)
文摘We theoretically investigate surface plasmon resonance properties in Au and Ag cubic nanoparticles and find a novel plasmonic mode that exhibits simultaneous low extinction and high local field enhancement properties. We analyse this mode from different aspects by looking at the distribution patterns of local field intensity, energy flux, absorption and charge density. We find that in the mode the polarized charge is highly densified in a very limited volume around the corner of the nanocube and results in very strong local field enhancement. Perturbations of the incident energy flux and light absorption are also strongly localized in this small volume of the corner region, leading to both low absorption and low scattering cross section. As a result, the extinction is low for the mode. Metal nanoparticles involving such peculiar modes may be useful for constructing nonlinear compound materials with low linear absorption and high nonlinearity.
基金supported by the National Natural Science Foundation of China (Grant No. 10874057)
文摘This paper studies the electromagnetic response of a coherently driven dense atomic ensemble to a weak probe. It finds that negative refraction with little absorption may be achieved in the presence of local-field enhanced interaction and dynamically induced chirality. The complex refractive index governing the probe refraction and absorption depends critically on the atomic density, the steady population distribution, the coherence dephasings, and the frequency de- tunings, and is also sensitive to the phase of the driving field because the photonic transition paths form a close loop. Thus, it can periodically tune the refractive index at a fixed frequency from negative to positive values and vice versa just by modulating the driving phase. Moreover, the optimal negative refraction is found to be near the probe magnetic resonance, which then requires the electric fields of the probe and the drive being on two-photon resonance due to the dipole synchronisation.
文摘A conventional global contrast enhancement is difficult to apply in various images because image quality and contrast enhancement are dependent on image characteristics largely. And a local contrast enhancement not only causes a washed-out effect, but also blocks. To solve these drawbacks, this paper derives an optimal global equalization function with variable size block based local contrast enhancement. The optimal equalization function makes it possible to get a good quality image through the global contrast enhancement. The variable size block segmentation is firstly exeoated using intensity differences as a measure of similarity. In the second step, the optimal global equalization function is obtained from the enhanced contrast image having variable size blocks. Conformed experiments have showed that the proposed algorithm produces a visually comfortable result image.
基金Project supported by the National Natural Science Fundation of China (Grant Nos.92050105,92250301,and 12227807)。
文摘Besides the diverse investigations on the interactions between intense laser fields and molecular systems,extensive research has been recently dedicated to exploring the response of nanosystems excited by well-tailored femtosecond laser fields.Due to the fact that nanostructures hold peculiar effects when illuminated by laser pulses,the underlying mechanisms and the corresponding potential applications can make significant improvements in both fundamental research and development of novel techniques.In this review,we provide a summarization of the strong field ionization occurring on the surface of nanosystems.The molecules attached to the nanoparticle surface perform as the precursor in the ionization and excitation of the whole nanosystem,the fundamental processes of which are yet to be discovered.We discuss the influence on nanoparticle constituents,geometric shapes and sizes,as well as the specific waveforms of the excitation laser fields.The intriguing characteristics observed in surface ion emission reflect how enhanced near field affects the localized ionizations and nanoplasma expansions,thereby paving the way for further precision controls on the light-and-matter interactions in the extreme spatial temporal levels.
基金supports from the National Natural Science Foundation of China(12074123,12174108)the Foundation of‘Manufacturing beyond limits’of Shanghai‘Talent Program'of Henan Academy of Sciences.
文摘Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.
基金supported by grants from the National Natural Science Foundation of China (grant number 81625005 to Z.F.)High-level Talents of the Beijing Health System (grant number 2014-3-080 to F.Z.)the program for Beijing Science and Technology of Chinese Medicine (grant number JJ2013-11 to F.Z.)
文摘Periodontitis is an inflammatory autoimmune disease. Treatment should alleviate inflammation, regulate the immune reaction and promote periodontal tissue regeneration. Icariin is the main active ingredient of Epimedii Folium, and it is a promising compound for the enhancement of mesenchymal stem cell function, promotion of bone formation, inhibition of bone resorption, alleviation of inflammation and regulation of immunity. The study investigated the effect of icariin on periodontal tissue regeneration in a minipig model of periodontitis. The minipig model of periodontitis was established. Icariin was injected locally. The periodontal clinical assessment index, a computed tomography(CT) scan, histopathology and enzyme-linked immune sorbent assay(ELISA)were used to evaluate the effects of icariin. Quantitative analysis results 12 weeks post-injection demonstrated that probing depth,gingival recession, attachment loss and alveolar bone regeneration values were(3.72 ± 1.18) mm vs.(6.56 ± 1.47) mm,(1.67 ± 0.59)mm vs.(2.38 ± 0.61) mm,(5.56 ± 1.29) mm vs.(8.61 ± 1.72) mm, and(25.65 ± 5.13) mm3 vs.(9.48 ± 1.78) mm3 in the icariin group and0.9% NaCl group, respectively. The clinical assessment, CT scan, and histopathology results demonstrated significant enhancement of periodontal tissue regeneration in the icariin group compared to the 0.9% NaCl group. The ELISA results suggested that the concentration of interleukin-1 beta(IL-1β) in the icariin group was downregulated compared to the 0.9% NaCl group, which indicates that local injection of icariin relieved local inflammation in a minipig model of periodontitis. Local injection of icariin promoted periodontal tissue regeneration and exerted anti-inflammatory and immunomodulatory function. These results support the application of icariin for the clinical treatment of periodontitis.
文摘The keto-enol tautomerization of ethyl acetoacetate (EAA) in supercritical CO2-ethanol mixture has been investigated at 308.15 K and at different pressures using UV-Visspectroscopy. A method for calculating the local composition about EAA has been developed based on the relationship between the equilibrium constant and dielectric property of the mixing solvent. The results indicate that the local concentration of ethanol surrounding EAA is much higher than that in the bulk.
基金supported by the National Natural Science Foundation of China(Nos.61825502,62061160487,and 12204462)the China Postdoctoral Science Foundation(Nos.2022M723061 and 2019M651200)+1 种基金the Major Science and Technology Projects in Jilin Province(No.20220301002GX)the Fundamental Research Funds for the Central Universities.
文摘Based on the one-dimensional periodic and Fibonacci-like waveguide arrays,we experimentally investigate localized quantum walks(QWs),both in the linear and nonlinear regimes.Unlike the ballistic transport behavior in conventional random QWs,localization of QWs is obtained in the Fibonacci-like waveguide arrays both theoretically and experimentally.Moreover,we verify the enhancement of the localization through nonlinearity-induced effect.Our work provides a valid way to study localization enhancement in QWs,which might broaden the understanding of nonlinearity-induced behaviors in quasiperiodic systems.
文摘In thefield of diagnosis of medical images the challenge lies in tracking and identifying the defective cells and the extent of the defective region within the complex structure of a brain cavity.Locating the defective cells precisely during the diagnosis phase helps tofight the greatest exterminator of mankind.Early detec-tion of these defective cells requires an accurate computer-aided diagnostic system(CAD)that supports early treatment and promotes survival rates of patients.An ear-lier version of CAD systems relies greatly on the expertise of radiologist and it con-sumed more time to identify the defective region.The manuscript takes the efficacy of coalescing features like intensity,shape,and texture of the magnetic resonance image(MRI).In the Enhanced Feature Fusion Segmentation based classification method(EEFS)the image is enhanced and segmented to extract the prominent fea-tures.To bring out the desired effect the EEFS method uses Enhanced Local Binary Pattern(EnLBP),Partisan Gray Level Co-occurrence Matrix Histogram of Oriented Gradients(PGLCMHOG),and iGrab cut method to segment image.These prominent features along with deep features are coalesced to provide a single-dimensional fea-ture vector that is effectively used for prediction.The coalesced vector is used with the existing classifiers to compare the results of these classifiers with that of the gen-erated vector.The generated vector provides promising results with commendably less computatio nal time for pre-processing and classification of MR medical images.
文摘Deep learning has risen in popularity as a face recognition technology in recent years.Facenet,a deep convolutional neural network(DCNN)developed by Google,recognizes faces with 128 bytes per face.It also claims to have achieved 99.96%on the reputed Labelled Faces in the Wild(LFW)dataset.How-ever,the accuracy and validation rate of Facenet drops down eventually,there is a gradual decrease in the resolution of the images.This research paper aims at developing a new facial recognition system that can produce a higher accuracy rate and validation rate on low-resolution face images.The proposed system Extended Openface performs facial recognition by using three different features i)facial landmark ii)head pose iii)eye gaze.It extracts facial landmark detection using Scattered Gated Expert Network Constrained Local Model(SGEN-CLM).It also detects the head pose and eye gaze using Enhanced Constrained Local Neur-alfield(ECLNF).Extended openface employs a simple Support Vector Machine(SVM)for training and testing the face images.The system’s performance is assessed on low-resolution datasets like LFW,Indian Movie Face Database(IMFDB).The results demonstrated that Extended Openface has a better accuracy rate(12%)and validation rate(22%)than Facenet on low-resolution images.
基金The National Key Research and Development Program of China under contract Nos 2017YFC0306603,2018YFC0309901,2016YFC0304905,2017YFC0306803 and 2018YFC0309902the China Ocean Mineral Resources Research and Development Association Major Project under contract Nos DY135-S1-1-01 and DY135-S1-1-02
文摘The ultraslow-spreading Southwest Indian Ridge (SWIR) to the east of the Melville fracture zone is characterized by very low melt supply and intensive tectonic activity. Due to its weak thermal budget and extremely slow spreading rate, the easternmost SWIR was considered to be devoid of hydrothermal activity until the discovery of the inactive Mt. lourdanne hydrothermal field (27°51'S, 63°56'E) in 1998. During the COMRA DYl15-20 cruise in 2009, two additional hydrothermal fields (i.e., the Tiancheng (27°51'S, 63°55'E) and Tianzuo (27°57'S, 63°32'E) fields) were discovered. Further detailed investigations of these two hydrothermal sites were conducted by Chinese manned submersible liaolong in 2014-2015. The Tiancheng filed can he characterized as a low- temperature (up to 13.2℃) diffuse flow hydrothermal field, and is hosted by fractured basalts with hydrothermal fauna widespread on the seafloor. The Tianzuo hydrothermal field is an inactive sulfide field, which is hosted by ultramafic rocks and controlled by detachment fault. The discovery of the three hydrothermal fields around Segment #11 which receives more melt than the regional average, provided evidence for local enhanced magmatism providing heat source to drive hydrothermal circulation. We further imply that hydrothermal activity and sulfide deposits may be rather promising along the easternmost SWIR.
基金Project supported by the National Natural Science Foundation of China(Nos.51575487 , 51875521)。
文摘The present work experimentally and numerically investigates the local heat transfer enhancement induced by a piezoelectric fan interacting with a cross flow in a local heated channel.The piezoelectric fan is placed along the flow direction and tested under different amplitudes and flow rates.In the simulations,a spring-based smoothing method and a local remeshing technique are used to handle the moving boundary problems.Hybrid mesh is used to reduce the size of dynamic mesh domain and to improve computational efficiency.The experimental and numerical values of the time-averaged mean Nusselt number are found to be in good agreement,with deviations of less than 10%.The experimental result shows that the heat transfer performance of the heated surfaces is substantially enhanced with a vibrating piezoelectric fan.The numerical result shows that the heat transfer enhancement comes from the strong longitudinal vortex pairs generated by the piezoelectric fan,which significantly promote heat exchange between the main flow and the near-wall flow.In the case of a=0.66(a is the dimensionless amplitude)and Re=1820,the enhancement ratio of the time-averaged mean Nusselt number reaches 119.9%.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10674038 and 10604042)the National Basic Research Program of China (Grant No. 2006CB302901)
文摘The enhancement characteristics of the local field in the surface plasmon nanocavities are investigated numerically. The cavity is constructed by placing a defect structure in the thickness-modulated metal-insulator-metal waveguide Bragg gratings. The characteristic impedance based transfer matrix method is used to calculate the transmission spectra and the resonant wavelength of the cavities with various geometric parameters. The finite-difference time- domain method is used to obtain the field pattern of the resonant mode and validate the results of the transfer matrix method. The calculation and simulation results reveal the existence of resonant wavelength shift and intensity variation with structural parameters, such as the modulation period of the gratings, the length and the width of the defect structure. Both numerical analysis and theoretical interpretation on these phenomena are given in details.
文摘The solvatochromic behavior of acetone in supercritical CO? was investigated from 75 bar to 239 bar and at 318.15K. A clustering model is proposed to investigate the formation of solute-solvent and solute-solute clusters, based on the solvatochromic study and some reasonable assumptions. At lower pressures, there were more than one solute molecules in one cluster. At higher pressures, however, each cluster only contained one solute and the clustering of solute-solvent was dominant.
文摘In this paper, we propose a locally enhanced PCANet neural network for fine-grained classification of vehicles. The proposed method adopts the PCANet unsupervised network with a smaller number of layers and simple parameters compared with the majority of state-of-the-art machine learning methods. It simplifies calculation steps and manual labeling, and enables vehicle types to be recognized without time-consuming training. Experimental results show that compared with the traditional pattern recognition methods and the multi-layer CNN methods, the proposed method achieves optimal balance in terms of varying scales of sample libraries, angle deviations, and training speed. It also indicates that introducing appropriate local features that have different scales from the general feature is very instrumental in improving recognition rate. The 7-angle in 180° (12-angle in 360°) classification modeling scheme is proven to be an effective approach, which can solve the problem of suffering decrease in recognition rate due to angle deviations, and add the recognition accuracy in practice.
基金supported by the Foundation for the Key Project of the Chinese Ministry of Education (Grant No. 108118)the Fundamental Research Funds for the Central Universities (Grant No. GK200901022)
文摘The surface enhanced fluorescence effect of acridine orange fluorophore in the proximity of Au nanoparticles has been investigated experimentally in the system of aqueous solution.Significant enhancement of the fluorescence intensity was observed when the system was excited with 532 nm or 442 nm CW lasers.The influence of the distances between neighboring Au particles as well as that between the fluorophore molecules and the Au surface were explored experimentally.The results demonstrated that a compact distribution of metallic particles was able to produce stronger fluorescence enhancement.Proper separation between the fluorophore molecules and the metal surface was favorable for a better enhancement.
基金the National Natural Science Foundation of China (Grand Nos.60878031,J0830308)the National Basic Research Programme of China (Grant No.2006CB302902)the Natural Science Foundation of Chaohu College (Grant No.XLY-200813)
文摘Silver nanoparticles(Ag NPs) were successfully assembled in porous anodic alumina(AAO) templates via a green silver mirror reaction.The Ag NPs/AAO composite templates then were characterized by field emission scanning electron microscopy(FESEM),energy-dispersive X-ray microanalysis(EDX),and X-ray diffraction(XRD).Furthermore,the photoluminescence(PL) properties were also investigated.Compared with the blank AAO,the PL intensity of Ag NPs/AAO templates are enhanced and the maximum enhancement is 2.58 times.Based on the local electric field enhancement effect,the theoretical values were also deduced,which are basically coincident with the experimental.
基金Project supported by the National Key Research Program of China(No.2011ZX01015-001)the National Basic Research Program of China(Nos.2011CBA00608,2012CB619203,2015CB351902,2015CB932402)
文摘Coherent anti-Stokes Raman scattering spectroscopy(CARS) is a well-known detecting tool in biosensing and nonlinear spectroscopy. It can provide a non-invasive alternative without the need for exogenous labels,while the enhancement factor for surface plasmon resonances(SPR) are extensively used to increase the local field close to the oscillators and which can obtain high enhancement. In this work, we investigate the enhancement factor of our structure for surface-enhanced coherent anti-Stokes Raman scattering. The absorption spectrum of the structure has been studied, a wide range of absorption has been realized. The enhancement can be as high as 10^(16) over standard CARS. Our design is very useful for improving the enhancement factor of surface-enhanced coherent anti-Stokes Raman scattering.
基金the National Science Fund for Distinguished Young Scholars(No.52225507).
文摘The difficulty of obtaining high-intensity localized light spots for optical probes leads to their lack of good applications in nanoimaging.Here we demonstrate a Fabry–Pérot resonance flat-based plasmonic fiber probe(FPFP).The simulation results show that the probe can obtain a nanofocusing spot at the tip with the radially polarized mode.The Fabry–Pérot interference structure is used to control the plasmon propagation on the surface of the probe,it effectively improves the local spot intensity at the tip.Furthermore,the experimental results verify that the FPFP(tip curvature radius is 20 nm)prepared by chemical etching method can obtain a nanofocusing spot at the tip.The nanoimaging of the gold slit structure demonstrates the nanoimaging capability of the FPFP,the 36.9 nm slit width is clearly identified by the FPFP.
基金This study was supported by funding from the Ministry of Education,Culture,Sports,Science,and Technology of Japan:KAKENHI Grant-in-Aid for Scientific Research No.23225006,Nanotechnology Platform(Hokkaido University)and the Low-Carbon Research Network of Japan.
文摘Localized surface plasmon resonance(LSPR)can be supported by metallic nanoparticles and engineered nanostructures.An understanding of the spatially resolved near-field properties and dynamics of LSPR is important,but remains experimentally challenging.We report experimental studies toward this aim using photoemission electron microscopy(PEEM)with high spatial resolution of sub-10 nm.Various engineered gold nanostructure arrays(such as rods,nanodisk-like particles and dimers)are investigated via PEEM using near-infrared(NIR)femtosecond laser pulses as the excitation source.When the LSPR wavelengths overlap the spectrum of the femtosecond pulses,the LSPR is efficiently excited and promotes multiphoton photoemission,which is correlated with the local intensity of the metallic nanoparticles in the near field.Thus,the local field distribution of the LSPR on different Au nanostructures can be directly explored and discussed using the PEEM images.In addition,the dynamics of the LSPR is studied by combining interferometric time-resolved pump-probe technique and PEEM.Detailed information on the oscillation and dephasing of the LSPR field can be obtained.The results identify PEEM as a powerful tool for accessing the near-field mapping and dynamic properties of plasmonic nanostructures.