This paper is concerned with the free boundary value problem for multidimensional Navier-Stokes equations with density-dependent viscosity where the flow density vanishes continuously across the free boundary. Local ...This paper is concerned with the free boundary value problem for multidimensional Navier-Stokes equations with density-dependent viscosity where the flow density vanishes continuously across the free boundary. Local (in time) existence of a weak solution is established; in particular, the density is positive and the solution is regular away from the free boundary.展开更多
In this article,we study the initial boundary value problem of the two-dimensional nonhomogeneous incompressible primitive equations and obtain the local existence and uniqueness of strong solutions.The initial vacuum...In this article,we study the initial boundary value problem of the two-dimensional nonhomogeneous incompressible primitive equations and obtain the local existence and uniqueness of strong solutions.The initial vacuum is allowed.展开更多
In this paper,we study the existence and local uniqueness of multi-peak solutions to the Kirchhoff type equations-(ε^(2)a+εb∫_(R^(3))|■u|^(2))△u+V(x)u=u^(p),u>0 in R^(3),which concentrate at non-degenerate cri...In this paper,we study the existence and local uniqueness of multi-peak solutions to the Kirchhoff type equations-(ε^(2)a+εb∫_(R^(3))|■u|^(2))△u+V(x)u=u^(p),u>0 in R^(3),which concentrate at non-degenerate critical points of the potential function V(x),where a,b>0,1<p<5 are constants,andε>0 is a parameter.Applying the Lyapunov-Schmidt reduction method and a local Pohozaev type identity,we establish the existence and local uniqueness results of multi-peak solutions,which concentrate at{a_(i)}1≤i≤k,where{a_(i)}1≤i≤k are non-degenerate critical points of V(x)asε→0.展开更多
In this paper we show that there exists a unique local smooth solution for the Cauchy problem of the inhomogeneous Schrdinger flow for maps from a compact Riemannian manifold M with dim(M)≤3 into a compact Khler mani...In this paper we show that there exists a unique local smooth solution for the Cauchy problem of the inhomogeneous Schrdinger flow for maps from a compact Riemannian manifold M with dim(M)≤3 into a compact Khler manifold(N, J)with nonpositive Riemannian sectional curvature展开更多
In this paper, the local existence and uniqueness of a chemotaxis model with a moving boundary are considered by the contraction mapping principle, and the explicit expression for the moving boundary is formulated. In...In this paper, the local existence and uniqueness of a chemotaxis model with a moving boundary are considered by the contraction mapping principle, and the explicit expression for the moving boundary is formulated. In addition, the finite-time blowup and chemotactic collapse of the solution for such kind of problem are discussed.展开更多
In this paper,a semilinear pseudo-parabolic equation with a general nonlin-earity and singular potential is considered.We prove the local existence of solution by Galerkin method and contraction mapping theorem.Moreov...In this paper,a semilinear pseudo-parabolic equation with a general nonlin-earity and singular potential is considered.We prove the local existence of solution by Galerkin method and contraction mapping theorem.Moreover,we prove the blow-up of solution and estimate the upper bound of the blow-up time for J(u0)≤0.Finally,we prove the finite time blow-up and estimate the upper bound of blow-up time for J(u0)>0.展开更多
This article is concerned with the 3 D nonhomogeneous incompressible magnetohydrodynamics equations with a slip boundary conditions in bounded domain.We obtain weighted estimates of the velocity and magnetic field,and...This article is concerned with the 3 D nonhomogeneous incompressible magnetohydrodynamics equations with a slip boundary conditions in bounded domain.We obtain weighted estimates of the velocity and magnetic field,and address the issue of local existence and uniqueness of strong solutions with the weaker initial data which contains vacuum states.展开更多
This paper considers a two-phase free boundary problem for coupled system including one parabolic equation and two elliptic equations. The problem comes from the discussion of a growth model of self-maintaining protoc...This paper considers a two-phase free boundary problem for coupled system including one parabolic equation and two elliptic equations. The problem comes from the discussion of a growth model of self-maintaining protocell in multidimensional case. The local classical solution of the problem with free boundary (?) y = g(x,t) between two domains is being seeked. The local existence and uniqueness of the problem will be proved in multidimensional case.展开更多
In this paper, we study how much regularity of initial data is needed to ensure existence of a local solution to the following semilinear wave equations utt-△u=F(u,Du) u(0,x)=f(x)∈H^s,δtu(0,x)=g(x)∈H^s-1...In this paper, we study how much regularity of initial data is needed to ensure existence of a local solution to the following semilinear wave equations utt-△u=F(u,Du) u(0,x)=f(x)∈H^s,δtu(0,x)=g(x)∈H^s-1,where F is quadratic in Du with D = (δr, δx1,…, δxn).We proved that the range of s is s ≥n+1/2 + δ, respectively, with δ 〉 1/4 if n = 2, and δ 〉 0 if n = 3, and δ ≥0 if n ≥ 4. Which is consistent with Lindblad's counterexamples [3] for n = 3, and the main ingredient is the use of the Strichartz estimates and the refinement of these.展开更多
We consider the global existence and decay of integral solutions to the parabolic-parabolic Keller-Segel system in d-dimension.On the one hand,by Banach fixed point theorem and some properties of heat kernel,we prove ...We consider the global existence and decay of integral solutions to the parabolic-parabolic Keller-Segel system in d-dimension.On the one hand,by Banach fixed point theorem and some properties of heat kernel,we prove the local existence and the global existence of integral solutions for the different initial data under some conditions that involve the size of the initial data.On the other hand,in the case of global solutions,we obtain their optimal time decay by Gronwall’s lemma.展开更多
This paper is concerned with a modified transitional Korteweg-de Vries equation ut+f(t)u2ux+uxxx=0, (x,t)∈R+×R+with initial value u(x,0)=g(x)∈H4(R+)and inhomogeneous boundary value u(0,t)=Q(t)∈C2([ 0,∞ )). Un...This paper is concerned with a modified transitional Korteweg-de Vries equation ut+f(t)u2ux+uxxx=0, (x,t)∈R+×R+with initial value u(x,0)=g(x)∈H4(R+)and inhomogeneous boundary value u(0,t)=Q(t)∈C2([ 0,∞ )). Under the conditions either 1) f(t)≤0, f′(t)≥0or 2) f(t)≤−αwhere α>0, we prove the existence of a unique global classical solution.展开更多
This paper is devoted to studying the initial value problem of the modified nonlinear Kawahara equation the first partial dervative of u to t ,the second the third +α the second partial dervative of u to x ,the seco...This paper is devoted to studying the initial value problem of the modified nonlinear Kawahara equation the first partial dervative of u to t ,the second the third +α the second partial dervative of u to x ,the second the third +β the third partial dervative of u to x ,the second the thire +γ the fifth partial dervative of u to x = 0,(x,t)∈R^2.We first establish several Strichartz type estimates for the fundamental solution of the corresponding linear problem. Then we apply such estimates to prove local and global existence of solutions for the initial value problem of the modified nonlinear Karahara equation. The results show that a local solution exists if the initial function uo(x) ∈ H^s(R) with s ≥ 1/4, and a global solution exists if s ≥ 2.展开更多
This paper is devoted to studying the initial value problems of the nonlinear Kaup Kupershmidt equations δu/δt + α1 uδ^2u/δx^2 + βδ^3u/δx^3 + γδ^5u/δx^5 = 0, (x,t)∈ E R^2, and δu/δt + α2 δu/δx ...This paper is devoted to studying the initial value problems of the nonlinear Kaup Kupershmidt equations δu/δt + α1 uδ^2u/δx^2 + βδ^3u/δx^3 + γδ^5u/δx^5 = 0, (x,t)∈ E R^2, and δu/δt + α2 δu/δx δ^2u/δx^2 + βδ^3u/δx^3 + γδ^5u/δx^5 = 0, (x, t) ∈R^2. Several important Strichartz type estimates for the fundamental solution of the corresponding linear problem are established. Then we apply such estimates to prove the local and global existence of solutions for the initial value problems of the nonlinear Kaup- Kupershmidt equations. The results show that a local solution exists if the initial function u0(x) ∈ H^s(R), and s ≥ 5/4 for the first equation and s≥301/108 for the second equation.展开更多
In this paper, we use contraction mapping principle, operator-theoretic approach and some uniform estimates to establish local solvability of the parabolic-hyperbolic type chemotaxis system with fixed boundary in 1-di...In this paper, we use contraction mapping principle, operator-theoretic approach and some uniform estimates to establish local solvability of the parabolic-hyperbolic type chemotaxis system with fixed boundary in 1-dimensional domain. In addition, local solvability of the free boundary problem is considered by straightening the free boundary.展开更多
we prove the local existence and uniqueness of a moving boundary prob- lem modeling chemotactic phenomena. We also get the explicit representative for the moving boundary in a special case.
This paper is devoted to studying the initial value problem of the Ginzburg-Landau type equations. We treat the case where the nonlinear interaction function is a general continuous function, not required to satisfy a...This paper is devoted to studying the initial value problem of the Ginzburg-Landau type equations. We treat the case where the nonlinear interaction function is a general continuous function, not required to satisfy any smoothness conditions. Local and global existence results of solutions of the problem are given. Decay estimates are also shown.展开更多
Pure initial value problems for important nonlinear evolution equations such as nonlinear Schrödinger equation (NLS) and the Ginzburg-Landau equation (GL) have been extensively studied. However, many applicat...Pure initial value problems for important nonlinear evolution equations such as nonlinear Schrödinger equation (NLS) and the Ginzburg-Landau equation (GL) have been extensively studied. However, many applications in physics lead to mathematical models where boundary data is inhomogeneous, e.g. in radio frequency wave experiments. In this paper, we investigate the mixed initial-boundary condition problem for the nonlinear Schrödinger equation iu<sub>t</sub> = u<sub>xx</sub> – g|u|<sup>p-1</sup>u, g ∈R, p > 3 on a semi-infinite strip. The equation satisfies an initial condition and Dirichlet boundary conditions. We utilize semi-group theory to prove existence and uniqueness theorem of a strong local solution.展开更多
In this paper we show that there exists a unique local smooth solution for the Cauchy problem of the Schrodinger flow for maps from a compact Riemannian manifold into a complete Kahler manifold, or from a Euclidean sp...In this paper we show that there exists a unique local smooth solution for the Cauchy problem of the Schrodinger flow for maps from a compact Riemannian manifold into a complete Kahler manifold, or from a Euclidean space Rm into a compact Kahler manifold. As a consequence, we prove that Heisenberg spin system is locally well-posed in the appropriate Sobolev spaces.展开更多
The regularity of the Cauchy problem for a generalized Camassa-Holm type equation is investigated. The pseudoparabolic regularization approach is employed to obtain some prior estimates under certain assumptions on th...The regularity of the Cauchy problem for a generalized Camassa-Holm type equation is investigated. The pseudoparabolic regularization approach is employed to obtain some prior estimates under certain assumptions on the initial value of the equation. The local existence of its solution in Sobolev space Hs (R) with 1 〈 s ≤ 3/2 is derived.展开更多
In this paper, firstly, we study the local existence and uniqueness of mild solutions for fractional evolution systems with nonlocal in time nonlinearity. Then, we claim that such a mild solution is weak solution of t...In this paper, firstly, we study the local existence and uniqueness of mild solutions for fractional evolution systems with nonlocal in time nonlinearity. Then, we claim that such a mild solution is weak solution of this system. Finally, we prove a blow-up result under some conditions.展开更多
基金partially supported by the NSFC(10871134)the AHRDIHL Project of Beijing Municipality (PHR201006107)
文摘This paper is concerned with the free boundary value problem for multidimensional Navier-Stokes equations with density-dependent viscosity where the flow density vanishes continuously across the free boundary. Local (in time) existence of a weak solution is established; in particular, the density is positive and the solution is regular away from the free boundary.
基金partially supported by the National Natural Science Foundation of China (11671273 and 11931010)key research project of the Academy for Multidisciplinary Studies of CNU and Beijing Natural Science Foundation (1192001).
文摘In this article,we study the initial boundary value problem of the two-dimensional nonhomogeneous incompressible primitive equations and obtain the local existence and uniqueness of strong solutions.The initial vacuum is allowed.
基金supported by the Natural Science Foundation of China(11771166,12071169)the Hubei Key Laboratory of Mathematical Sciences and Program for Changjiang Scholars and Innovative Research Team in University#IRT17R46。
文摘In this paper,we study the existence and local uniqueness of multi-peak solutions to the Kirchhoff type equations-(ε^(2)a+εb∫_(R^(3))|■u|^(2))△u+V(x)u=u^(p),u>0 in R^(3),which concentrate at non-degenerate critical points of the potential function V(x),where a,b>0,1<p<5 are constants,andε>0 is a parameter.Applying the Lyapunov-Schmidt reduction method and a local Pohozaev type identity,we establish the existence and local uniqueness results of multi-peak solutions,which concentrate at{a_(i)}1≤i≤k,where{a_(i)}1≤i≤k are non-degenerate critical points of V(x)asε→0.
基金Partially Supported by National University of Singapore Academic Research Fund Grant RP3982718the Natural Science Foundation of China: 19701034 (the third author)
文摘In this paper we show that there exists a unique local smooth solution for the Cauchy problem of the inhomogeneous Schrdinger flow for maps from a compact Riemannian manifold M with dim(M)≤3 into a compact Khler manifold(N, J)with nonpositive Riemannian sectional curvature
文摘In this paper, the local existence and uniqueness of a chemotaxis model with a moving boundary are considered by the contraction mapping principle, and the explicit expression for the moving boundary is formulated. In addition, the finite-time blowup and chemotactic collapse of the solution for such kind of problem are discussed.
基金Supported by National Natural Science Foundation of China(Grant No.11271141).
文摘In this paper,a semilinear pseudo-parabolic equation with a general nonlin-earity and singular potential is considered.We prove the local existence of solution by Galerkin method and contraction mapping theorem.Moreover,we prove the blow-up of solution and estimate the upper bound of the blow-up time for J(u0)≤0.Finally,we prove the finite time blow-up and estimate the upper bound of blow-up time for J(u0)>0.
基金This work was supported by Natural Science Foundation of China(11871412).
文摘This article is concerned with the 3 D nonhomogeneous incompressible magnetohydrodynamics equations with a slip boundary conditions in bounded domain.We obtain weighted estimates of the velocity and magnetic field,and address the issue of local existence and uniqueness of strong solutions with the weaker initial data which contains vacuum states.
基金The project is supported by National Natural Science Foundation of China(10371045)Guangdong Provincial Natural Science Foundation of China(000671)National Natural Science Foundation of China(10426015).
文摘This paper considers a two-phase free boundary problem for coupled system including one parabolic equation and two elliptic equations. The problem comes from the discussion of a growth model of self-maintaining protocell in multidimensional case. The local classical solution of the problem with free boundary (?) y = g(x,t) between two domains is being seeked. The local existence and uniqueness of the problem will be proved in multidimensional case.
基金Supported by the NSF of China(10225102, 10301026)Supported by the South-west Jiaotong University Foundation(20005B05)
文摘In this paper, we study how much regularity of initial data is needed to ensure existence of a local solution to the following semilinear wave equations utt-△u=F(u,Du) u(0,x)=f(x)∈H^s,δtu(0,x)=g(x)∈H^s-1,where F is quadratic in Du with D = (δr, δx1,…, δxn).We proved that the range of s is s ≥n+1/2 + δ, respectively, with δ 〉 1/4 if n = 2, and δ 〉 0 if n = 3, and δ ≥0 if n ≥ 4. Which is consistent with Lindblad's counterexamples [3] for n = 3, and the main ingredient is the use of the Strichartz estimates and the refinement of these.
文摘We consider the global existence and decay of integral solutions to the parabolic-parabolic Keller-Segel system in d-dimension.On the one hand,by Banach fixed point theorem and some properties of heat kernel,we prove the local existence and the global existence of integral solutions for the different initial data under some conditions that involve the size of the initial data.On the other hand,in the case of global solutions,we obtain their optimal time decay by Gronwall’s lemma.
文摘This paper is concerned with a modified transitional Korteweg-de Vries equation ut+f(t)u2ux+uxxx=0, (x,t)∈R+×R+with initial value u(x,0)=g(x)∈H4(R+)and inhomogeneous boundary value u(0,t)=Q(t)∈C2([ 0,∞ )). Under the conditions either 1) f(t)≤0, f′(t)≥0or 2) f(t)≤−αwhere α>0, we prove the existence of a unique global classical solution.
文摘This paper is devoted to studying the initial value problem of the modified nonlinear Kawahara equation the first partial dervative of u to t ,the second the third +α the second partial dervative of u to x ,the second the third +β the third partial dervative of u to x ,the second the thire +γ the fifth partial dervative of u to x = 0,(x,t)∈R^2.We first establish several Strichartz type estimates for the fundamental solution of the corresponding linear problem. Then we apply such estimates to prove local and global existence of solutions for the initial value problem of the modified nonlinear Karahara equation. The results show that a local solution exists if the initial function uo(x) ∈ H^s(R) with s ≥ 1/4, and a global solution exists if s ≥ 2.
文摘This paper is devoted to studying the initial value problems of the nonlinear Kaup Kupershmidt equations δu/δt + α1 uδ^2u/δx^2 + βδ^3u/δx^3 + γδ^5u/δx^5 = 0, (x,t)∈ E R^2, and δu/δt + α2 δu/δx δ^2u/δx^2 + βδ^3u/δx^3 + γδ^5u/δx^5 = 0, (x, t) ∈R^2. Several important Strichartz type estimates for the fundamental solution of the corresponding linear problem are established. Then we apply such estimates to prove the local and global existence of solutions for the initial value problems of the nonlinear Kaup- Kupershmidt equations. The results show that a local solution exists if the initial function u0(x) ∈ H^s(R), and s ≥ 5/4 for the first equation and s≥301/108 for the second equation.
基金Supported by the National Natural Science Foundation of China(11131005)the Fundamental Research Funds for the Central Universities(2014201020202)
文摘In this paper, we use contraction mapping principle, operator-theoretic approach and some uniform estimates to establish local solvability of the parabolic-hyperbolic type chemotaxis system with fixed boundary in 1-dimensional domain. In addition, local solvability of the free boundary problem is considered by straightening the free boundary.
文摘we prove the local existence and uniqueness of a moving boundary prob- lem modeling chemotactic phenomena. We also get the explicit representative for the moving boundary in a special case.
基金This work is supported by the China National Science Foundation (No. 10471157).
文摘This paper is devoted to studying the initial value problem of the Ginzburg-Landau type equations. We treat the case where the nonlinear interaction function is a general continuous function, not required to satisfy any smoothness conditions. Local and global existence results of solutions of the problem are given. Decay estimates are also shown.
文摘Pure initial value problems for important nonlinear evolution equations such as nonlinear Schrödinger equation (NLS) and the Ginzburg-Landau equation (GL) have been extensively studied. However, many applications in physics lead to mathematical models where boundary data is inhomogeneous, e.g. in radio frequency wave experiments. In this paper, we investigate the mixed initial-boundary condition problem for the nonlinear Schrödinger equation iu<sub>t</sub> = u<sub>xx</sub> – g|u|<sup>p-1</sup>u, g ∈R, p > 3 on a semi-infinite strip. The equation satisfies an initial condition and Dirichlet boundary conditions. We utilize semi-group theory to prove existence and uniqueness theorem of a strong local solution.
基金National Key Basic Research Fund (Grant Nos. G1999075109 and G1999075107) the National Science Fund for Distinguished Young Scholars (Grant No. 10025104).
文摘In this paper we show that there exists a unique local smooth solution for the Cauchy problem of the Schrodinger flow for maps from a compact Riemannian manifold into a complete Kahler manifold, or from a Euclidean space Rm into a compact Kahler manifold. As a consequence, we prove that Heisenberg spin system is locally well-posed in the appropriate Sobolev spaces.
基金Supported by Key Project of Chinese Ministry of Education (Grant No.109140)the SWUFE's third period construction item funds of the 211 project (Grant No.211D3T06)
文摘The regularity of the Cauchy problem for a generalized Camassa-Holm type equation is investigated. The pseudoparabolic regularization approach is employed to obtain some prior estimates under certain assumptions on the initial value of the equation. The local existence of its solution in Sobolev space Hs (R) with 1 〈 s ≤ 3/2 is derived.
基金Supported by National Natural Science Foundation of China-NSAF(Grant No.10976026)
文摘In this paper, firstly, we study the local existence and uniqueness of mild solutions for fractional evolution systems with nonlocal in time nonlinearity. Then, we claim that such a mild solution is weak solution of this system. Finally, we prove a blow-up result under some conditions.