Obtaining a 3D feature description with high descriptiveness and robustness under complicated nuisances is a significant and challenging task in 3D feature matching.This paper proposes a novel feature description cons...Obtaining a 3D feature description with high descriptiveness and robustness under complicated nuisances is a significant and challenging task in 3D feature matching.This paper proposes a novel feature description consisting of a stable local reference frame(LRF)and a feature descriptor based on local spatial voxels.First,an improved LRF was designed by incorporating distance weights into Z-and X-axis calculations.Subsequently,based on the LRF and voxel segmentation,a feature descriptor based on voxel homogenization was proposed.Moreover,uniform segmentation of cube voxels was performed,considering the eigenvalues of each voxel and its neighboring voxels,thereby enhancing the stability of the description.The performance of the descriptor was strictly tested and evaluated on three public datasets,which exhibited high descriptiveness,robustness,and superior performance compared with other current methods.Furthermore,the descriptor was applied to a 3D registration trial,and the results demonstrated the reliability of our approach.展开更多
To fully describe the structure information of the point cloud when the LIDAR-object distance is long,a joint global and local feature(JGLF)descriptor is constructed.Compared with five typical descriptors,the object r...To fully describe the structure information of the point cloud when the LIDAR-object distance is long,a joint global and local feature(JGLF)descriptor is constructed.Compared with five typical descriptors,the object recognition rate of JGLF is higher when the LIDAR-object distances change.Under the situation that airborne LIDAR is getting close to the object,the particle filtering(PF)algorithm is used as the tracking frame.Particle weight is updated by comparing the difference between JGLFs to track the object.It is verified that the proposed algorithm performs 13.95%more accurately and stably than the basic PF algorithm.展开更多
基金the National Natural Science Foundation of China,No.51705469the Zhengzhou University Youth Talent Enterprise Cooperative Innovation Team Support Program Project(2021,2022).
文摘Obtaining a 3D feature description with high descriptiveness and robustness under complicated nuisances is a significant and challenging task in 3D feature matching.This paper proposes a novel feature description consisting of a stable local reference frame(LRF)and a feature descriptor based on local spatial voxels.First,an improved LRF was designed by incorporating distance weights into Z-and X-axis calculations.Subsequently,based on the LRF and voxel segmentation,a feature descriptor based on voxel homogenization was proposed.Moreover,uniform segmentation of cube voxels was performed,considering the eigenvalues of each voxel and its neighboring voxels,thereby enhancing the stability of the description.The performance of the descriptor was strictly tested and evaluated on three public datasets,which exhibited high descriptiveness,robustness,and superior performance compared with other current methods.Furthermore,the descriptor was applied to a 3D registration trial,and the results demonstrated the reliability of our approach.
基金This work was supported by the National Natural Science Foundation of China(Nos.61271353 and 61871389)Foundation of State Key Laboratory of Pulsed Power Laser Technology(No.SKL2018ZR09)Major Funding Projects of National University of Defense Technology(No.ZK18-01-02).
文摘To fully describe the structure information of the point cloud when the LIDAR-object distance is long,a joint global and local feature(JGLF)descriptor is constructed.Compared with five typical descriptors,the object recognition rate of JGLF is higher when the LIDAR-object distances change.Under the situation that airborne LIDAR is getting close to the object,the particle filtering(PF)algorithm is used as the tracking frame.Particle weight is updated by comparing the difference between JGLFs to track the object.It is verified that the proposed algorithm performs 13.95%more accurately and stably than the basic PF algorithm.