Quantitative assessment of local field potentials by means of Fast Fourier Transformation (FFT) results in the so-called power density spectrum. Within this spectrum particular frequency ranges are defined in order to...Quantitative assessment of local field potentials by means of Fast Fourier Transformation (FFT) results in the so-called power density spectrum. Within this spectrum particular frequency ranges are defined in order to relate these to behavior. Frequencies above 35 Hz are generally labeled as gamma oscillations, especially as low gamma (40 - 55 Hz) or high gamma (70 - 100 Hz). In order to learn more about this feature, we implanted a set of 4 bipolar concentric steel electrodes in frontal cortex, hippocampus, striatum and midbrain reticular formation of 10 rats. After recovery, field potentials were recorded and wirelessly transmitted to our computer for frequency analysis. At the same time, motion was registered during the whole experimental period of 5.75 hours. Results revealed that low gamma activity only emerged when the animal moved—at least his head. FFT of the data showed—besides other frequencies—a slow gamma activity peaking around 47 Hz pre-dominantly within the striatum, less in frontal cortex and reticular formation and nearly none in the hippocampus. Spectral analysis was performed for single epochs of 4 seconds and all 15 minutes intervals. Correlation analysis of these intervals was done to motion data. All rats showed a highly significant correlation between gamma activity and movement. We therefore conclude from these experiments that this slow gamma activity of the field potentials is not only related to movement, but possibly part of the general neuronal coding of movement.展开更多
The long-term enhancement in glutamate receptor mediated excitatory responses has been observed in stroke model. This pathological form of plasticity, termed post-ischemic long-term potentiation (i-LTP), points to f...The long-term enhancement in glutamate receptor mediated excitatory responses has been observed in stroke model. This pathological form of plasticity, termed post-ischemic long-term potentiation (i-LTP), points to functional reorganization after stroke. Little is known, however, about whether and how this i-LTP would affect subsequent induction of synaptic plasticity. Here, we first directly confirmed that i-LTP was induced in the endothelin-l-induced ischemia model as in other in vitro models. We also demonstrated increased expression of NR2B, CaMKII and p-CaMKII, which are reminiscent of i-LTP. We further induced LTP of field excitatory post- synaptic potentials (fEPSPs) on CA1 hippocampal neurons in peri-infarct regions of the endothelin-l-induced mini-stroke model. We found that LTP of fEPSPs, induced by high-frequency stimulation, displayed a progressive impairment at 12 and 24 hours after ischemia. Moreover, using in vivo multi-channel recording, we found that the local field potential, which represents electrical property of cell ensembles in more restricted regions, was also dam- pened at these two time points. These results suggest that i-LTP elevates the induction threshold of subsequent synap- tic plasticity. Our data helps to deepen the knowledge of meta-synaptic regulation of plasticity after focal ischemia.展开更多
A novel robot navigation algorithm with global path generation capability is presented. Local minimum is a most intractable but is an encountered frequently problem in potential field based robot navigation.Through ap...A novel robot navigation algorithm with global path generation capability is presented. Local minimum is a most intractable but is an encountered frequently problem in potential field based robot navigation.Through appointing appropriately some virtual local targets on the journey, it can be solved effectively. The key concept employed in this algorithm are the rules that govern when and how to appoint these virtual local targets. When the robot finds itself in danger of local minimum, a virtual local target is appointed to replace the global goal temporarily according to the rules. After the virtual target is reached, the robot continues on its journey by heading towards the global goal. The algorithm prevents the robot from running into local minima anymore. Simulation results showed that it is very effective in complex obstacle environments.展开更多
This review hopes to clearly explain the following viewpoints: (1) Neuronal synchronization underlies brain functioning, and it seems possible that blocking excessive synchronization in an epileptic neural network ...This review hopes to clearly explain the following viewpoints: (1) Neuronal synchronization underlies brain functioning, and it seems possible that blocking excessive synchronization in an epileptic neural network could reduce or even control seizures. (2) Local field potential coupling is a very common phenomenon during synchronization in networks. Removal of neurons or neuronal networks that are coupled can significantly alter the extracellular field potential. Interventions of coupling mediated by local field potentials could result in desynchronization of epileptic seizures. (3) The synchronized electrical activity generated by neurons is sensitive to changes in the size of the extracellular space, which affects the efficiency of field potential transmission and the threshold of cell excitability. (4) Manipulations of the field potential fluctuations could help block synchronization at seizure onset.展开更多
Propofol may produce memory impairment during anesthesia procedure. Local field potentials (LFPs) are used with increasing frequency in recent years to link neural activity to perception and cognition. In this study, ...Propofol may produce memory impairment during anesthesia procedure. Local field potentials (LFPs) are used with increasing frequency in recent years to link neural activity to perception and cognition. In this study, effect of propofol on LFPs in rat’s prefrontal cortex during working memory task was evaluated. Young (approximately 3 month) male Sprague-Dawley rats were divided into two group: propofol rats and control rats. Propofol rats received propofol at 0.9 mg/Kg·min intravenously for 2 h. After 12 h, LFPs of all rats were measured simultaneously from multiple electrodes placed in prefrontal cortex while rats were performing a working memory task in Y-maze. LFPs instantaneous phase were obtained by applying Hilbert transform, and cross-correlation coherence of LFPs was calculated. The results indicate that propofol decreased the correct rate and crosscorrelation coherence of LFPs on the first two days (p 0.05). Our results suggest that propofol can impair cross-correlation coherence of LFPs in the first two days, but not long time.展开更多
Local field potential(LFP) signals of the rat hippocampus were recorded under noninvasive focused ultrasound stimulation(FUS) with different ultrasonic powers. The LFP mean absolute power was calculated with the Welch...Local field potential(LFP) signals of the rat hippocampus were recorded under noninvasive focused ultrasound stimulation(FUS) with different ultrasonic powers. The LFP mean absolute power was calculated with the Welch algorithm at the delta, theta, alpha, beta, and gamma frequency bands. The experimental results demonstrate that the LFP mean absolute power at different frequency bands increases as the ultrasound power increases.展开更多
Deep brain stimulation (DBS) has become an effective therapeutic option for neurological and psychiatric disorders such as Parkinson’s disease (PD), dystonia, and obsessive-compulsive disorder. The subthalamic nucleu...Deep brain stimulation (DBS) has become an effective therapeutic option for neurological and psychiatric disorders such as Parkinson’s disease (PD), dystonia, and obsessive-compulsive disorder. The subthalamic nucleus (STN) and internal globus pallidus (GPi) are by far the most commonly used targets for DBS in the treatment of PD. However, STN/GPi stimulation sometimes causes side effects, including motor fluctuations, cognitive declines, and worse emotional experience, which affect patients’ postoperative quality of life. Recent invasive electrophysiological studies are driven by the desire to better understand the mechanisms of therapeutic actions and side effects of STN/GPi stimulation. These studies investigated the function of the STN and GPi in motor, cognitive and affective processes by recording single- neuron firing patterns during the surgery or local field potentials after the surgery. Here we review the relevant studies to provide an integrative picture of the functional roles of the STN and GPi within the basal ganglia loops for motor, cognition, and emotion. Previous studies suggested that STN and GPi gamma oscillations encode the strength and speed of voluntary movements (execution), whereas beta oscillations reflect the effort and demand of potential movements (preparation). In the cognitive domain, oscillatory beta activity in the STN is involved when people have to stop an inappropriate action or to suppress salient but task-irrelevant information, whereas theta/delta activity is associated with the adjustment of decision thresholds and cost-benefit trade-off. In the affective domain, STN activity in the alpha band may represent the valence and arousal of emotional information.展开更多
The problem of the unmanned surface vessel (USV) path planning in static and dynamic obstacle environments is addressed in this paper. Multi-behavior fusion based potential field method is proposed, which contains thr...The problem of the unmanned surface vessel (USV) path planning in static and dynamic obstacle environments is addressed in this paper. Multi-behavior fusion based potential field method is proposed, which contains three behaviors: goal-seeking, boundary-memory following and dynamic-obstacle avoidance. Then, different activation conditions are designed to determine the current behavior. Meanwhile, information on the positions, velocities and the equation of motion for obstacles are detected and calculated by sensor data. Besides, memory information is introduced into the boundary following behavior to enhance cognition capability for the obstacles, and avoid local minima problem caused by the potential field method. Finally, the results of theoretical analysis and simulation show that the collision-free path can be generated for USV within different obstacle environments, and further validated the performance and effectiveness of the presented strategy.展开更多
Cooperative path planning is an important area in fixed-wing UAV swarm.However,avoiding multiple timevarying obstacles and avoiding local optimum are two challenges for existing approaches in a dynamic environment.Fir...Cooperative path planning is an important area in fixed-wing UAV swarm.However,avoiding multiple timevarying obstacles and avoiding local optimum are two challenges for existing approaches in a dynamic environment.Firstly,a normalized artificial potential field optimization is proposed by reconstructing a novel function with anisotropy in each dimension,which can make the flight speed of a fixed UAV swarm independent of the repulsive/attractive gain coefficient and avoid trapping into local optimization and local oscillation.Then,taking into account minimum velocity and turning angular velocity of fixed-wing UAV swarm,a strategy of decomposing target vector to avoid moving obstacles and pop-up threats is proposed.Finally,several simulations are carried out to illustrate superiority and effectiveness.展开更多
The concept of receptive field(RF) is central to sensory neuroscience. Neuronal RF properties have been substantially studied in animals,while those in humans remain nearly unexplored. Here, we measured neuronal RFs w...The concept of receptive field(RF) is central to sensory neuroscience. Neuronal RF properties have been substantially studied in animals,while those in humans remain nearly unexplored. Here, we measured neuronal RFs with intracranial local field potentials(LFPs) and spiking activity in human visual cortex(V1/V2/V3). We recorded LFPs via macro-contacts and discovered that RF sizes estimated from lowfrequency activity(LFA, 0.5–30 Hz) were larger than those estimated from low-gamma activity(LGA, 30–60 Hz) and high-gamma activity(HGA, 60–150 Hz). We then took a rare opportunity to record LFPs and spiking activity via microwires in V1 simultaneously. We found that RF sizes and temporal profiles measured from LGA and HGA closely matched those from spiking activity. In sum, this study reveals that spiking activity of neurons in human visual cortex could be well approximated by LGA and HGA in RF estimation and temporal profile measurement, implying the pivotal functions of LGA and HGA in early visual information processing.展开更多
In view of the complex marine environment of navigation,especially in the case of multiple static and dynamic obstacles,the traditional obstacle avoidance algorithms applied to unmanned surface vehicles(USV)are prone ...In view of the complex marine environment of navigation,especially in the case of multiple static and dynamic obstacles,the traditional obstacle avoidance algorithms applied to unmanned surface vehicles(USV)are prone to fall into the trap of local optimization.Therefore,this paper proposes an improved artificial potential field(APF)algorithm,which uses 5G communication technology to communicate between the USV and the control center.The algorithm introduces the USV discrimination mechanism to avoid the USV falling into local optimization when the USV encounter different obstacles in different scenarios.Considering the various scenarios between the USV and other dynamic obstacles such as vessels in the process of performing tasks,the algorithm introduces the concept of dynamic artificial potential field.For the multiple obstacles encountered in the process of USV sailing,based on the International Regulations for Preventing Collisions at Sea(COLREGS),the USV determines whether the next step will fall into local optimization through the discriminationmechanism.The local potential field of the USV will dynamically adjust,and the reverse virtual gravitational potential field will be added to prevent it from falling into the local optimization and avoid collisions.The objective function and cost function are designed at the same time,so that the USV can smoothly switch between the global path and the local obstacle avoidance.The simulation results show that the improved APF algorithm proposed in this paper can successfully avoid various obstacles in the complex marine environment,and take navigation time and economic cost into account.展开更多
In order to overcome the drawbacks of conventional artificial potential fields (APF) based methods for the motion planning problems of mobile robots in dynamic uncertain environments, an artificial coordinating fields...In order to overcome the drawbacks of conventional artificial potential fields (APF) based methods for the motion planning problems of mobile robots in dynamic uncertain environments, an artificial coordinating fields (ACF) based method has been proposed recently. This paper deals with the reachability problem of the ACF, that is, how to design and choose the parameters of the ACF and how the environment should be such that the robot can reach its goal without being trapped in local minima. Some sufficient conditions for these purposes are developed theoretically. Theoretical analyses show that, the ACF can effectively remove local minima in dynamic uncertain environments with V-shape or U-shape obstacles, and guide the mobile robot to reach its goal with some necessary environment constraints and based on the methods provided in this paper to properly choose the parameters of the ACF. Comparisons between the ACF and APF, and simulations are provided to illustrate the advantages of the ACF.展开更多
在未来的多无人机(unmanned aerial vehicle,UAV)空中作战中,无人机集群在未知空域中安全飞行是集群研究中的重要内容。针对无人机集群避障以及集群形态保持问题,提出了一种基于视野和速度引导(visual field and velocity guidance,VFVG...在未来的多无人机(unmanned aerial vehicle,UAV)空中作战中,无人机集群在未知空域中安全飞行是集群研究中的重要内容。针对无人机集群避障以及集群形态保持问题,提出了一种基于视野和速度引导(visual field and velocity guidance,VFVG)的集群避撞算法。基于视野法设计集群自适应通讯拓扑机制,结合远吸近斥势力原则及一致性方法,在保持集群形态的同时,加速了集群无人机个体间的避障信息的传递。在此基础上,提出将极限环与人工势场法相结合构造避障速度引导项,解决了集群遇障分群困难、避障徘徊停滞等问题。引入避障时间指标,验证了算法的避障效率。仿真结果表明,该方法能够使多无人机以良好的集群形态安全快速平稳地通过复杂障碍区域,有效提高了集群避障成功率和避障效率。展开更多
文摘Quantitative assessment of local field potentials by means of Fast Fourier Transformation (FFT) results in the so-called power density spectrum. Within this spectrum particular frequency ranges are defined in order to relate these to behavior. Frequencies above 35 Hz are generally labeled as gamma oscillations, especially as low gamma (40 - 55 Hz) or high gamma (70 - 100 Hz). In order to learn more about this feature, we implanted a set of 4 bipolar concentric steel electrodes in frontal cortex, hippocampus, striatum and midbrain reticular formation of 10 rats. After recovery, field potentials were recorded and wirelessly transmitted to our computer for frequency analysis. At the same time, motion was registered during the whole experimental period of 5.75 hours. Results revealed that low gamma activity only emerged when the animal moved—at least his head. FFT of the data showed—besides other frequencies—a slow gamma activity peaking around 47 Hz pre-dominantly within the striatum, less in frontal cortex and reticular formation and nearly none in the hippocampus. Spectral analysis was performed for single epochs of 4 seconds and all 15 minutes intervals. Correlation analysis of these intervals was done to motion data. All rats showed a highly significant correlation between gamma activity and movement. We therefore conclude from these experiments that this slow gamma activity of the field potentials is not only related to movement, but possibly part of the general neuronal coding of movement.
基金supported by Major State Basic Research Program of China(Grant No.2013CB733801)
文摘The long-term enhancement in glutamate receptor mediated excitatory responses has been observed in stroke model. This pathological form of plasticity, termed post-ischemic long-term potentiation (i-LTP), points to functional reorganization after stroke. Little is known, however, about whether and how this i-LTP would affect subsequent induction of synaptic plasticity. Here, we first directly confirmed that i-LTP was induced in the endothelin-l-induced ischemia model as in other in vitro models. We also demonstrated increased expression of NR2B, CaMKII and p-CaMKII, which are reminiscent of i-LTP. We further induced LTP of field excitatory post- synaptic potentials (fEPSPs) on CA1 hippocampal neurons in peri-infarct regions of the endothelin-l-induced mini-stroke model. We found that LTP of fEPSPs, induced by high-frequency stimulation, displayed a progressive impairment at 12 and 24 hours after ischemia. Moreover, using in vivo multi-channel recording, we found that the local field potential, which represents electrical property of cell ensembles in more restricted regions, was also dam- pened at these two time points. These results suggest that i-LTP elevates the induction threshold of subsequent synap- tic plasticity. Our data helps to deepen the knowledge of meta-synaptic regulation of plasticity after focal ischemia.
文摘A novel robot navigation algorithm with global path generation capability is presented. Local minimum is a most intractable but is an encountered frequently problem in potential field based robot navigation.Through appointing appropriately some virtual local targets on the journey, it can be solved effectively. The key concept employed in this algorithm are the rules that govern when and how to appoint these virtual local targets. When the robot finds itself in danger of local minimum, a virtual local target is appointed to replace the global goal temporarily according to the rules. After the virtual target is reached, the robot continues on its journey by heading towards the global goal. The algorithm prevents the robot from running into local minima anymore. Simulation results showed that it is very effective in complex obstacle environments.
基金supported by grants from the National Natural Science Foundation of China,No. 30971534125 Project of the Third Xiangya Hospital of Central South University,China
文摘This review hopes to clearly explain the following viewpoints: (1) Neuronal synchronization underlies brain functioning, and it seems possible that blocking excessive synchronization in an epileptic neural network could reduce or even control seizures. (2) Local field potential coupling is a very common phenomenon during synchronization in networks. Removal of neurons or neuronal networks that are coupled can significantly alter the extracellular field potential. Interventions of coupling mediated by local field potentials could result in desynchronization of epileptic seizures. (3) The synchronized electrical activity generated by neurons is sensitive to changes in the size of the extracellular space, which affects the efficiency of field potential transmission and the threshold of cell excitability. (4) Manipulations of the field potential fluctuations could help block synchronization at seizure onset.
文摘Propofol may produce memory impairment during anesthesia procedure. Local field potentials (LFPs) are used with increasing frequency in recent years to link neural activity to perception and cognition. In this study, effect of propofol on LFPs in rat’s prefrontal cortex during working memory task was evaluated. Young (approximately 3 month) male Sprague-Dawley rats were divided into two group: propofol rats and control rats. Propofol rats received propofol at 0.9 mg/Kg·min intravenously for 2 h. After 12 h, LFPs of all rats were measured simultaneously from multiple electrodes placed in prefrontal cortex while rats were performing a working memory task in Y-maze. LFPs instantaneous phase were obtained by applying Hilbert transform, and cross-correlation coherence of LFPs was calculated. The results indicate that propofol decreased the correct rate and crosscorrelation coherence of LFPs on the first two days (p 0.05). Our results suggest that propofol can impair cross-correlation coherence of LFPs in the first two days, but not long time.
基金supported by the National Natural Science Foundation of China(Grant No.61273063)China Postdoctoral Science Foundation(Grant No.2013M540215)the Natural Science Foundation of Hebei Province,China(Grant No.F2014203161)
文摘Local field potential(LFP) signals of the rat hippocampus were recorded under noninvasive focused ultrasound stimulation(FUS) with different ultrasonic powers. The LFP mean absolute power was calculated with the Welch algorithm at the delta, theta, alpha, beta, and gamma frequency bands. The experimental results demonstrate that the LFP mean absolute power at different frequency bands increases as the ultrasound power increases.
基金the Thousand Young Talents Program (to Z.Y.)National Natural Science Foundation of China (31771216, to Z.Y.).
文摘Deep brain stimulation (DBS) has become an effective therapeutic option for neurological and psychiatric disorders such as Parkinson’s disease (PD), dystonia, and obsessive-compulsive disorder. The subthalamic nucleus (STN) and internal globus pallidus (GPi) are by far the most commonly used targets for DBS in the treatment of PD. However, STN/GPi stimulation sometimes causes side effects, including motor fluctuations, cognitive declines, and worse emotional experience, which affect patients’ postoperative quality of life. Recent invasive electrophysiological studies are driven by the desire to better understand the mechanisms of therapeutic actions and side effects of STN/GPi stimulation. These studies investigated the function of the STN and GPi in motor, cognitive and affective processes by recording single- neuron firing patterns during the surgery or local field potentials after the surgery. Here we review the relevant studies to provide an integrative picture of the functional roles of the STN and GPi within the basal ganglia loops for motor, cognition, and emotion. Previous studies suggested that STN and GPi gamma oscillations encode the strength and speed of voluntary movements (execution), whereas beta oscillations reflect the effort and demand of potential movements (preparation). In the cognitive domain, oscillatory beta activity in the STN is involved when people have to stop an inappropriate action or to suppress salient but task-irrelevant information, whereas theta/delta activity is associated with the adjustment of decision thresholds and cost-benefit trade-off. In the affective domain, STN activity in the alpha band may represent the valence and arousal of emotional information.
基金financially supported by the National Natural Science Foundation of China(Grant No.51879049)DK-I Dynamic Positioning System Console Project
文摘The problem of the unmanned surface vessel (USV) path planning in static and dynamic obstacle environments is addressed in this paper. Multi-behavior fusion based potential field method is proposed, which contains three behaviors: goal-seeking, boundary-memory following and dynamic-obstacle avoidance. Then, different activation conditions are designed to determine the current behavior. Meanwhile, information on the positions, velocities and the equation of motion for obstacles are detected and calculated by sensor data. Besides, memory information is introduced into the boundary following behavior to enhance cognition capability for the obstacles, and avoid local minima problem caused by the potential field method. Finally, the results of theoretical analysis and simulation show that the collision-free path can be generated for USV within different obstacle environments, and further validated the performance and effectiveness of the presented strategy.
文摘Cooperative path planning is an important area in fixed-wing UAV swarm.However,avoiding multiple timevarying obstacles and avoiding local optimum are two challenges for existing approaches in a dynamic environment.Firstly,a normalized artificial potential field optimization is proposed by reconstructing a novel function with anisotropy in each dimension,which can make the flight speed of a fixed UAV swarm independent of the repulsive/attractive gain coefficient and avoid trapping into local optimization and local oscillation.Then,taking into account minimum velocity and turning angular velocity of fixed-wing UAV swarm,a strategy of decomposing target vector to avoid moving obstacles and pop-up threats is proposed.Finally,several simulations are carried out to illustrate superiority and effectiveness.
基金supported by the National Science and Technology Innovation 2030 Major Program(2022ZD0204802,2022ZD0204804)the National Natural Science Foundation of China(31930053,32171039)Beijing Academy of Artificial Intelligence(BAAI)。
文摘The concept of receptive field(RF) is central to sensory neuroscience. Neuronal RF properties have been substantially studied in animals,while those in humans remain nearly unexplored. Here, we measured neuronal RFs with intracranial local field potentials(LFPs) and spiking activity in human visual cortex(V1/V2/V3). We recorded LFPs via macro-contacts and discovered that RF sizes estimated from lowfrequency activity(LFA, 0.5–30 Hz) were larger than those estimated from low-gamma activity(LGA, 30–60 Hz) and high-gamma activity(HGA, 60–150 Hz). We then took a rare opportunity to record LFPs and spiking activity via microwires in V1 simultaneously. We found that RF sizes and temporal profiles measured from LGA and HGA closely matched those from spiking activity. In sum, this study reveals that spiking activity of neurons in human visual cortex could be well approximated by LGA and HGA in RF estimation and temporal profile measurement, implying the pivotal functions of LGA and HGA in early visual information processing.
基金This work was supported by the Postdoctoral Fund of FDCT,Macao(Grant No.0003/2021/APD).Any opinions,findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the sponsor.
文摘In view of the complex marine environment of navigation,especially in the case of multiple static and dynamic obstacles,the traditional obstacle avoidance algorithms applied to unmanned surface vehicles(USV)are prone to fall into the trap of local optimization.Therefore,this paper proposes an improved artificial potential field(APF)algorithm,which uses 5G communication technology to communicate between the USV and the control center.The algorithm introduces the USV discrimination mechanism to avoid the USV falling into local optimization when the USV encounter different obstacles in different scenarios.Considering the various scenarios between the USV and other dynamic obstacles such as vessels in the process of performing tasks,the algorithm introduces the concept of dynamic artificial potential field.For the multiple obstacles encountered in the process of USV sailing,based on the International Regulations for Preventing Collisions at Sea(COLREGS),the USV determines whether the next step will fall into local optimization through the discriminationmechanism.The local potential field of the USV will dynamically adjust,and the reverse virtual gravitational potential field will be added to prevent it from falling into the local optimization and avoid collisions.The objective function and cost function are designed at the same time,so that the USV can smoothly switch between the global path and the local obstacle avoidance.The simulation results show that the improved APF algorithm proposed in this paper can successfully avoid various obstacles in the complex marine environment,and take navigation time and economic cost into account.
基金This paper was partly supported by the National Natural Science Foundation (No.60131160741,60334010) of China.
文摘In order to overcome the drawbacks of conventional artificial potential fields (APF) based methods for the motion planning problems of mobile robots in dynamic uncertain environments, an artificial coordinating fields (ACF) based method has been proposed recently. This paper deals with the reachability problem of the ACF, that is, how to design and choose the parameters of the ACF and how the environment should be such that the robot can reach its goal without being trapped in local minima. Some sufficient conditions for these purposes are developed theoretically. Theoretical analyses show that, the ACF can effectively remove local minima in dynamic uncertain environments with V-shape or U-shape obstacles, and guide the mobile robot to reach its goal with some necessary environment constraints and based on the methods provided in this paper to properly choose the parameters of the ACF. Comparisons between the ACF and APF, and simulations are provided to illustrate the advantages of the ACF.
文摘在未来的多无人机(unmanned aerial vehicle,UAV)空中作战中,无人机集群在未知空域中安全飞行是集群研究中的重要内容。针对无人机集群避障以及集群形态保持问题,提出了一种基于视野和速度引导(visual field and velocity guidance,VFVG)的集群避撞算法。基于视野法设计集群自适应通讯拓扑机制,结合远吸近斥势力原则及一致性方法,在保持集群形态的同时,加速了集群无人机个体间的避障信息的传递。在此基础上,提出将极限环与人工势场法相结合构造避障速度引导项,解决了集群遇障分群困难、避障徘徊停滞等问题。引入避障时间指标,验证了算法的避障效率。仿真结果表明,该方法能够使多无人机以良好的集群形态安全快速平稳地通过复杂障碍区域,有效提高了集群避障成功率和避障效率。