The leakage current behaviours of polycrystalline BiFeO3 thin films are investigated by using both conductive atomic force microscopy and current-voltage characteristic measurements. The local charge transport pathway...The leakage current behaviours of polycrystalline BiFeO3 thin films are investigated by using both conductive atomic force microscopy and current-voltage characteristic measurements. The local charge transport pathways are found to be located mainly at the grain boundaries of the films. The leakage current density can be tuned by changing the post-annealing temperature, the annealing time, the bias voltage and the light illumination, which can be used to improve the performances of the ferroelectric devices based on the BiFeOa films. A possible leakage mechanism is proposed to interpret the charge transports in the polycrystalline BiFeO3 films.展开更多
In this paper the elastic properties of SiOx film are investigated quantitatively for local fixed point and qualitatively for overall area by atomic force acoustic microscopy (AFAM) in which the sample is vibrated a...In this paper the elastic properties of SiOx film are investigated quantitatively for local fixed point and qualitatively for overall area by atomic force acoustic microscopy (AFAM) in which the sample is vibrated at the ultrasonic frequency while the sample surface is touched and scanned with the tip contacting the sample respectively for fixed point and continuous measurements. The SiOx films on the silicon wafers are prepared by the plasma enhanced chemical vapour deposition (PECVD), The local contact stiffness of the tip-SiOx film is calculated from the contact resonance spectrum measured with the atomic force acoustic microscopy. Using the reference approach, indentation modulus of SiOx film for fixed point is obtained. The images of cantilever amplitude are also visualized and analysed when the SiOx surface is excited at a fixed frequency. The results show that the acoustic amplitude images can reflect the elastic properties of the sample.展开更多
An obvious weak localization correction to anomalous Hall conductance(AHC) in very thin CoFeB film is reported.We find that both the weak localization to AHC and the mechanism of the anomalous Hall effect are relate...An obvious weak localization correction to anomalous Hall conductance(AHC) in very thin CoFeB film is reported.We find that both the weak localization to AHC and the mechanism of the anomalous Hall effect are related to the CoFeB thickness.When the film is thicker than 3 nm,the side jump mechanism dominates and the weak locaUzation to AHC vanishes.For very thin CoFeB films,both the side jump and skew scattering mechanisms contribute to the anomalous Hall effect,and the weak localization correction to AHC is observed.展开更多
We investigate the sensitivity and figure of merit (FOM) of a localized surface plasmon (LSP) sensor with gold nanograting on the top of planar metallic film. The sensitivity of the localized surface plasmon senso...We investigate the sensitivity and figure of merit (FOM) of a localized surface plasmon (LSP) sensor with gold nanograting on the top of planar metallic film. The sensitivity of the localized surface plasmon sensor is 317 nm/RIU, and the FOM is predicted to be above 8, which is very high for a localized surface plasmon sensor. By employing the rigorous coupled-wave analysis (RCWA) method, we analyze the distribution of the magnetic field and find that the sensing property of our proposed system is attributed to the interactions between the localized surface plasmon around the gold nanostrips and the surface plasmon polarition on the surface of the gold planar metallic film. These findings are important for developing high FOM localized surface plasmon sensors.展开更多
Effects of deposition layer position film are systematically investigated. Because the and number/density on local bending of a thin deposition layer interacts with the thin film at the interface and there is an offse...Effects of deposition layer position film are systematically investigated. Because the and number/density on local bending of a thin deposition layer interacts with the thin film at the interface and there is an offset between the thin film neutral surface and the interface, the deposition layer generates not only axial stress but also bending moment. The bending moment induces an instant out-of-plane deflection of the thin film, which may or may not cause the socalled local bending. The deposition layer is modeled as a local stressor, whose location and density are demonstrated to be vital to the occurrence of local bending. The thin film rests on a viscous layer, which is governed by the Navier-Stokes equation and behaves like an elastic foundation to exert transverse forces on the thin film. The unknown feature of the axial constraint force makes the governing equation highly nonlinear even for the small deflection chse. The constraint force and film transverse deflection are solved iteratively through the governing equation and the displacement constraint equation of immovable edges. This research shows that in some special cases, the deposition density increase does not necessarily reduce the local bending. By comparing the thin film deflections of different deposition numbers and positions, we also present the guideline of strengthening or suppressing the local bending.展开更多
YBCO textured thick film was prepared by direct peritectic growth method. Microstructure of the film was characterized. Electron backscattered diffraction (EBSD) technique was applied to the film for quantitative te...YBCO textured thick film was prepared by direct peritectic growth method. Microstructure of the film was characterized. Electron backscattered diffraction (EBSD) technique was applied to the film for quantitative texture analysis. The main difficulty in resolving the orientation of YBCO pseudo-cubic structure was investigated. Automated orientation mapping was performed on YBCO thick film. Local texture was presented in the form of orientation maps. Misorientation distribution and crystal growth characterization in the YBCO thick film were revealed. Large domains with well-aligned YBCO grains were formed. Each domain presented clear in-plane and out-plane textures.展开更多
The coupling of local surface plasmon (LSP) of nanoparticle and surface plasmon (SP) mode produced by metal film can lead to the enhanced electromagnetic field, which has an important application in enhancing the ...The coupling of local surface plasmon (LSP) of nanoparticle and surface plasmon (SP) mode produced by metal film can lead to the enhanced electromagnetic field, which has an important application in enhancing the fluorescence of quantum dots (QDs). Herein, the Ag nanocube and Ag film are used to enhance the fluorescence of CdSe QDs. The enhancement is found to relate to the sizes of the Ag nanocube and the thickness of the Ag film. Moreover, we also present the fluorescence enhancement caused by only SP. The result shows that the coupling between metal nanoparticles and metal film can realize larger field enhancement. Numerical simulation verifies that a nanocube can localize a strong electric field around its comer. All the results indicate that the fluorescence of QDs can be efficiently improved by optimizing the parameters of Ag film and Ag cubes.展开更多
Local annealing of amorphous NiTi thin films was performed by using an Nd:YAG 1064 nm wavelength pulsed laser beam. Raw samples produced by simultaneous sputter deposition from elemental Ni and Ti targets onto unheat...Local annealing of amorphous NiTi thin films was performed by using an Nd:YAG 1064 nm wavelength pulsed laser beam. Raw samples produced by simultaneous sputter deposition from elemental Ni and Ti targets onto unheated Si (100) and Silica (111) substrates were used for annealing. Delicate treatment with 15.92 W/mm^2 power density resulted in crystallization of small spots; while 16.52 and 17.51 W/mm^2 power densities caused ablation of the amorphous layer. Optical microscopy, scanning electron microscopy, X-ray diffraction and atomic force microscopy were performed to characterize the microstructure and surface morphology of the amorphous/crystallized spot patterns.展开更多
AFM has been utilized to study the surface topography and the local conductivity of nanocrystalline TiO2 films. Improving the local conductivity by Ti(iso-C3H7O)4 treatment is characterized by quantitative analysis o...AFM has been utilized to study the surface topography and the local conductivity of nanocrystalline TiO2 films. Improving the local conductivity by Ti(iso-C3H7O)4 treatment is characterized by quantitative analysis of the simultaneous current image. The mechanism of Ti(iso C3H7O)4 treatment is discussed.展开更多
基金supported by the Chinese Academy of Sciencesthe State Key Project of Fundamental Research of Chinathe Natural Science Foundation of Ningbo,China
文摘The leakage current behaviours of polycrystalline BiFeO3 thin films are investigated by using both conductive atomic force microscopy and current-voltage characteristic measurements. The local charge transport pathways are found to be located mainly at the grain boundaries of the films. The leakage current density can be tuned by changing the post-annealing temperature, the annealing time, the bias voltage and the light illumination, which can be used to improve the performances of the ferroelectric devices based on the BiFeOa films. A possible leakage mechanism is proposed to interpret the charge transports in the polycrystalline BiFeO3 films.
基金Project supported by the National Natural Science Foundation of China(Grant No.50775005)
文摘In this paper the elastic properties of SiOx film are investigated quantitatively for local fixed point and qualitatively for overall area by atomic force acoustic microscopy (AFAM) in which the sample is vibrated at the ultrasonic frequency while the sample surface is touched and scanned with the tip contacting the sample respectively for fixed point and continuous measurements. The SiOx films on the silicon wafers are prepared by the plasma enhanced chemical vapour deposition (PECVD), The local contact stiffness of the tip-SiOx film is calculated from the contact resonance spectrum measured with the atomic force acoustic microscopy. Using the reference approach, indentation modulus of SiOx film for fixed point is obtained. The images of cantilever amplitude are also visualized and analysed when the SiOx surface is excited at a fixed frequency. The results show that the acoustic amplitude images can reflect the elastic properties of the sample.
基金supported by the National Basic Research Program of China(Grant No.2012CB933102)the National Natural Science Foundation of China(Grant Nos.11079052,11174354,and 51172080)
文摘An obvious weak localization correction to anomalous Hall conductance(AHC) in very thin CoFeB film is reported.We find that both the weak localization to AHC and the mechanism of the anomalous Hall effect are related to the CoFeB thickness.When the film is thicker than 3 nm,the side jump mechanism dominates and the weak locaUzation to AHC vanishes.For very thin CoFeB films,both the side jump and skew scattering mechanisms contribute to the anomalous Hall effect,and the weak localization correction to AHC is observed.
基金Project supported by the National Key Research Program of China(Grant No.2011ZX01015-001)
文摘We investigate the sensitivity and figure of merit (FOM) of a localized surface plasmon (LSP) sensor with gold nanograting on the top of planar metallic film. The sensitivity of the localized surface plasmon sensor is 317 nm/RIU, and the FOM is predicted to be above 8, which is very high for a localized surface plasmon sensor. By employing the rigorous coupled-wave analysis (RCWA) method, we analyze the distribution of the magnetic field and find that the sensing property of our proposed system is attributed to the interactions between the localized surface plasmon around the gold nanostrips and the surface plasmon polarition on the surface of the gold planar metallic film. These findings are important for developing high FOM localized surface plasmon sensors.
基金supported by the National Natural Science Foundation of China (No.10721202)the LNM Initial Funding for Young Investigators
文摘Effects of deposition layer position film are systematically investigated. Because the and number/density on local bending of a thin deposition layer interacts with the thin film at the interface and there is an offset between the thin film neutral surface and the interface, the deposition layer generates not only axial stress but also bending moment. The bending moment induces an instant out-of-plane deflection of the thin film, which may or may not cause the socalled local bending. The deposition layer is modeled as a local stressor, whose location and density are demonstrated to be vital to the occurrence of local bending. The thin film rests on a viscous layer, which is governed by the Navier-Stokes equation and behaves like an elastic foundation to exert transverse forces on the thin film. The unknown feature of the axial constraint force makes the governing equation highly nonlinear even for the small deflection chse. The constraint force and film transverse deflection are solved iteratively through the governing equation and the displacement constraint equation of immovable edges. This research shows that in some special cases, the deposition density increase does not necessarily reduce the local bending. By comparing the thin film deflections of different deposition numbers and positions, we also present the guideline of strengthening or suppressing the local bending.
文摘YBCO textured thick film was prepared by direct peritectic growth method. Microstructure of the film was characterized. Electron backscattered diffraction (EBSD) technique was applied to the film for quantitative texture analysis. The main difficulty in resolving the orientation of YBCO pseudo-cubic structure was investigated. Automated orientation mapping was performed on YBCO thick film. Local texture was presented in the form of orientation maps. Misorientation distribution and crystal growth characterization in the YBCO thick film were revealed. Large domains with well-aligned YBCO grains were formed. Each domain presented clear in-plane and out-plane textures.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51272246 and 81172082)the Fundamental Research Funds for the Central Universities,China(Grant No.2030000001)
文摘The coupling of local surface plasmon (LSP) of nanoparticle and surface plasmon (SP) mode produced by metal film can lead to the enhanced electromagnetic field, which has an important application in enhancing the fluorescence of quantum dots (QDs). Herein, the Ag nanocube and Ag film are used to enhance the fluorescence of CdSe QDs. The enhancement is found to relate to the sizes of the Ag nanocube and the thickness of the Ag film. Moreover, we also present the fluorescence enhancement caused by only SP. The result shows that the coupling between metal nanoparticles and metal film can realize larger field enhancement. Numerical simulation verifies that a nanocube can localize a strong electric field around its comer. All the results indicate that the fluorescence of QDs can be efficiently improved by optimizing the parameters of Ag film and Ag cubes.
文摘Local annealing of amorphous NiTi thin films was performed by using an Nd:YAG 1064 nm wavelength pulsed laser beam. Raw samples produced by simultaneous sputter deposition from elemental Ni and Ti targets onto unheated Si (100) and Silica (111) substrates were used for annealing. Delicate treatment with 15.92 W/mm^2 power density resulted in crystallization of small spots; while 16.52 and 17.51 W/mm^2 power densities caused ablation of the amorphous layer. Optical microscopy, scanning electron microscopy, X-ray diffraction and atomic force microscopy were performed to characterize the microstructure and surface morphology of the amorphous/crystallized spot patterns.
基金This work was supported by National Research Fund for Fundamental Key Project (G2000028205) Innovative Foundation of Chinese Academy of Sciences and the Project of the National Natural Science Foundation of China (29873057). We thank Dr. D.S. Zhang for
文摘AFM has been utilized to study the surface topography and the local conductivity of nanocrystalline TiO2 films. Improving the local conductivity by Ti(iso-C3H7O)4 treatment is characterized by quantitative analysis of the simultaneous current image. The mechanism of Ti(iso C3H7O)4 treatment is discussed.