Artificial bee colony(ABC) algorithm is motivated by the intelligent behavior of honey bees when seeking a high quality food source. It has a relatively simple structure but good global optimization ability. In order ...Artificial bee colony(ABC) algorithm is motivated by the intelligent behavior of honey bees when seeking a high quality food source. It has a relatively simple structure but good global optimization ability. In order to balance its global search and local search abilities further, some improvements for the standard ABC algorithm are made in this study. Firstly, the local search mechanism of cuckoo search optimization(CS) is introduced into the onlooker bee phase to enhance its dedicated search; secondly, the scout bee phase is also modified by the chaotic search mechanism. The improved ABC algorithm is used to identify the parameters of chaotic systems, the identified results from the present algorithm are compared with those from other algorithms. Numerical simulations, including Lorenz system and a hyper chaotic system, illustrate the present algorithm is a powerful tool for parameter estimation with high accuracy and low deviations. It is not sensitive to artificial measurement noise even using limited input data.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11172333&11272361)the Guangdong Province Natural Science Foundation(Grant No.2015A030313126)the Guangdong Province Science and Technology Program(Grant Nos.2014A020218004&2016A020223006)
文摘Artificial bee colony(ABC) algorithm is motivated by the intelligent behavior of honey bees when seeking a high quality food source. It has a relatively simple structure but good global optimization ability. In order to balance its global search and local search abilities further, some improvements for the standard ABC algorithm are made in this study. Firstly, the local search mechanism of cuckoo search optimization(CS) is introduced into the onlooker bee phase to enhance its dedicated search; secondly, the scout bee phase is also modified by the chaotic search mechanism. The improved ABC algorithm is used to identify the parameters of chaotic systems, the identified results from the present algorithm are compared with those from other algorithms. Numerical simulations, including Lorenz system and a hyper chaotic system, illustrate the present algorithm is a powerful tool for parameter estimation with high accuracy and low deviations. It is not sensitive to artificial measurement noise even using limited input data.