To investigate the robustness of face recognition algorithms under the complicated variations of illumination, facial expression and posture, the advantages and disadvantages of seven typical algorithms on extracting ...To investigate the robustness of face recognition algorithms under the complicated variations of illumination, facial expression and posture, the advantages and disadvantages of seven typical algorithms on extracting global and local features are studied through the experiments respectively on the Olivetti Research Laboratory database and the other three databases (the three subsets of illumination, expression and posture that are constructed by selecting images from several existing face databases). By taking the above experimental results into consideration, two schemes of face recognition which are based on the decision fusion of the twodimensional linear discriminant analysis (2DLDA) and local binary pattern (LBP) are proposed in this paper to heighten the recognition rates. In addition, partitioning a face nonuniformly for its LBP histograms is conducted to improve the performance. Our experimental results have shown the complementarities of the two kinds of features, the 2DLDA and LBP, and have verified the effectiveness of the proposed fusion algorithms.展开更多
微表情是一个人试图隐藏内心真实情感却又不由自主流露出的不易被察觉的面部表情。与一般面部表情相比,微表情最显著的特点是持续时间短、强度弱,往往难以有效识别。文中提出了一种基于LBP-TOP(Local Binary Pattern from Three Orthogo...微表情是一个人试图隐藏内心真实情感却又不由自主流露出的不易被察觉的面部表情。与一般面部表情相比,微表情最显著的特点是持续时间短、强度弱,往往难以有效识别。文中提出了一种基于LBP-TOP(Local Binary Pattern from Three Orthogonal Planes)特征和支持向量机(Support Vector Machine,SVM)分类器的微表情识别方法。首先,采用LBP-TOP算子来提取微表情特征;然后,提出一种基于ReliefF与局部线性嵌入(Locally Linear Embedding,LLE)流形学习算法相结合的特征选择算法,对提取的LBP-TOP特征向量进行降维;最后,使用径向基函数(Radial Basis Function,RBF)核的SVM分类器进行分类,将测试样本图像序列的微表情分为5类:高兴、厌恶、压抑、惊讶、其他。在CASME Ⅱ微表情数据库上采用"留一人交叉验证"(Leave-One-Subject-Out Cross Validation,LOSO-CV)的方式进行了实验,可得到58.98%的分类准确率。实验结果表明了该算法的有效性。展开更多
流形学习方法可以有效地发现存在于高维图像空间的低维子流形,但是流形学习是一种非监督学习方法,其鉴别能力反而不如传统的维数约简方法,且对人脸图像的光照、姿态等局部变化敏感.针对这两个问题,本文提出一种基于人脸表观流形鉴别分...流形学习方法可以有效地发现存在于高维图像空间的低维子流形,但是流形学习是一种非监督学习方法,其鉴别能力反而不如传统的维数约简方法,且对人脸图像的光照、姿态等局部变化敏感.针对这两个问题,本文提出一种基于人脸表观流形鉴别分析的识别方法,该方法利用局部二元模式(Local binary pattern,LBP)对人脸图像进行局部特征描述,提取对局部变化不敏感的特征,然后使用有监督的核局部线性嵌入算法(Supervised kernel local linear embedding,SKLLE)对由局部特征构造的全局特征进行维数约简,提取低维鉴别流形特征进行人脸识别.该方法不仅对局部变化不敏感,而且将人脸表观流形和类别信息进行有效的结合,同时对新样本有较好的泛化性.实验结果表明该算法能有效的提高人脸识别的性能.展开更多
针对现有行人检测方法速度慢、无法满足实时性检测需求的缺点,提出一种基于边缘对称性和改进的等价局部二值模式的行人检测方法 ES-IULBP(Edge Symmetry and Improved Uniform Local Binary Patterns)。该方法首先对输入的图像进行垂直...针对现有行人检测方法速度慢、无法满足实时性检测需求的缺点,提出一种基于边缘对称性和改进的等价局部二值模式的行人检测方法 ES-IULBP(Edge Symmetry and Improved Uniform Local Binary Patterns)。该方法首先对输入的图像进行垂直边缘提取并计算对称性,完成行人的初检测,确定行人候选区;然后引入等价局部二值模式,并对其改进,进行行人的纹理特征提取;最后结合线性支持向量机进行行人验证。实验结果表明,与基于梯度方向直方图特征的行人检测方法相比,ES-IULBP检测速度快、准确率高,并具有较强的鲁棒性。展开更多
文摘To investigate the robustness of face recognition algorithms under the complicated variations of illumination, facial expression and posture, the advantages and disadvantages of seven typical algorithms on extracting global and local features are studied through the experiments respectively on the Olivetti Research Laboratory database and the other three databases (the three subsets of illumination, expression and posture that are constructed by selecting images from several existing face databases). By taking the above experimental results into consideration, two schemes of face recognition which are based on the decision fusion of the twodimensional linear discriminant analysis (2DLDA) and local binary pattern (LBP) are proposed in this paper to heighten the recognition rates. In addition, partitioning a face nonuniformly for its LBP histograms is conducted to improve the performance. Our experimental results have shown the complementarities of the two kinds of features, the 2DLDA and LBP, and have verified the effectiveness of the proposed fusion algorithms.
文摘流形学习方法可以有效地发现存在于高维图像空间的低维子流形,但是流形学习是一种非监督学习方法,其鉴别能力反而不如传统的维数约简方法,且对人脸图像的光照、姿态等局部变化敏感.针对这两个问题,本文提出一种基于人脸表观流形鉴别分析的识别方法,该方法利用局部二元模式(Local binary pattern,LBP)对人脸图像进行局部特征描述,提取对局部变化不敏感的特征,然后使用有监督的核局部线性嵌入算法(Supervised kernel local linear embedding,SKLLE)对由局部特征构造的全局特征进行维数约简,提取低维鉴别流形特征进行人脸识别.该方法不仅对局部变化不敏感,而且将人脸表观流形和类别信息进行有效的结合,同时对新样本有较好的泛化性.实验结果表明该算法能有效的提高人脸识别的性能.
文摘针对现有行人检测方法速度慢、无法满足实时性检测需求的缺点,提出一种基于边缘对称性和改进的等价局部二值模式的行人检测方法 ES-IULBP(Edge Symmetry and Improved Uniform Local Binary Patterns)。该方法首先对输入的图像进行垂直边缘提取并计算对称性,完成行人的初检测,确定行人候选区;然后引入等价局部二值模式,并对其改进,进行行人的纹理特征提取;最后结合线性支持向量机进行行人验证。实验结果表明,与基于梯度方向直方图特征的行人检测方法相比,ES-IULBP检测速度快、准确率高,并具有较强的鲁棒性。
文摘随着超像素算法的发展, SLIC (Simple linear iterative clustering)由于时间复杂度低及良好的分割结果而被广泛关注.但是由于传统的SLIC算法并没有考虑到图像的纹理信息,故而对于纹理较复杂的图像分割效果略有不足. LBP (Local binary pattern)对于纹理的识别有着优秀的表现而且时间复杂度低,但是对于噪声的鲁棒性较差,并且会产生纹理偏移.因此,本文首先针对传统的LBP中存在的问题进行改进;然后将改进后的算法与SLIC结合,提出一种融合纹理信息的超像素算法—SLICT (Simple linear iterative clustering based on texture).为验证分割效果,本文选取纹理较多的医学图像进行实验,采用心脏MRI数据库进行验证并与其他超像素算法进行对比.实验表明, SLICT在边缘召回率、欠分割错误率以及覆盖率上的综合表现优于其他算法.从分割结果上来看, SLICT不但能够更好地贴合图像边缘,而且对于连续区域的分割效果也较好,更适合纹理较复杂的图像.