Using simple unequal-thickness billet combining isothermal local loading can control the metal flow and improve the cavity fill in manufacturing process of large-scale rib-web titanium alloy component with low cost an...Using simple unequal-thickness billet combining isothermal local loading can control the metal flow and improve the cavity fill in manufacturing process of large-scale rib-web titanium alloy component with low cost and short cycle. The beveling transition pattern is well used for variable-thickness region of billet (VTRB) due to its simple and ample range of transition condition. The transition condition development in the local loading process has a significant influence on dynamic boundary of unrestricted portion of VTRB. With the help of reasonable assumptions, a mathematical model of transition condition development was established by theoretical analysis. The predicted results for local loading process of rib-web component using the established model were compared with the numerical and experimental ones, and the results indicated that the model of transition condition development is reasonable. Using the established model could deal with the dynamic boundary of unrestricted portion of VTRB well, and the model is suitable for the analysis of metal flow and cavity fill in local loading process of multi-ribs component.展开更多
In order to study influences of geometric parameters on the T-shaped components local loading process, a new mathematical model considering the fillet radius and draft angle was established by using the slab method. T...In order to study influences of geometric parameters on the T-shaped components local loading process, a new mathematical model considering the fillet radius and draft angle was established by using the slab method. The results obtained by the mathematical model agree with the data form experiment and numerical simulation, and the results are closer to the experimental and simulation results. The influence of draft angle may be neglected under the forming conditions used. The influence of fillet radius is notable, especially in the case that the ratio of fillet radius to rib width is less than 0.75.展开更多
To control the tri-modal microstructure and performance,a prediction model of tri-modal microstructure in the isothermal local loading forming of titanium alloy was developed.The staged isothermal local loading experi...To control the tri-modal microstructure and performance,a prediction model of tri-modal microstructure in the isothermal local loading forming of titanium alloy was developed.The staged isothermal local loading experiment on TA15alloy indicates that there exist four important microstructure evolution phenomena in the development of tri-modal microstructure,i.e.,the generation of lamellarα,content variation of equiaxedα,spatial orientation change of lamellarαand globularization of lamellarα.Considering the laws of these microstructure phenomena,the microstructure model was established to correlate the parameters of tri-modal microstructure and processing conditions.Then,the developed microstructure model was integrated with finite element(FE)model to predict the tri-modal microstructure in the isothermal local loading forming.Its reliability and accuracy were verified by the microstructure observation at different locations of sample.Good agreements between the predicted and experimental results suggest that the developed microstructure model and its combination with FE model are effective in the prediction of tri-modal microstructure in the isothermal local loading forming of TA15alloy.展开更多
Avoiding the folding defect and improving the die filling capability in the transitional region are desired in isothermal local loading forming of a large-scale Ti-alloy rib-web component(LTRC). To achieve a high-pr...Avoiding the folding defect and improving the die filling capability in the transitional region are desired in isothermal local loading forming of a large-scale Ti-alloy rib-web component(LTRC). To achieve a high-precision LTRC, the folding evolution and die filling process in the transitional region were investigated by 3 D finite element simulation and experiment using an equal-thickness billet(ETB). It is found that the initial volume distribution in the second-loading region can greatly affect the amount of material transferred into the first-loading region during the second-loading step, and thus lead to the folding defect. Besides, an improper initial volume distribution results in non-concurrent die filling in the cavities of ribs after the second-loading step, and then causes die underfilling. To this end, an unequal-thickness billet(UTB) was employed with the initial volume distribution optimized by the response surface method(RSM). For a certain eigenstructure, the critical value of the percentage of transferred material determined by the ETB was taken as a constraint condition for avoiding the folding defect in the UTB optimization process,and the die underfilling rate was considered as the optimization objective. Then, based on the RSM models of the percentage of transferred material and the die underfilling rate, non-folding parameter combinations and optimum die filling were achieved. Lastly, an optimized UTB was obtained and verified by the simulation and experiment.展开更多
Billet optimization can greatly improve the forming quality of the transitional region in the isothermal local loading forming (ILLF) of large-scale Ti-alloy ribweb components. However, the final quality of the tran...Billet optimization can greatly improve the forming quality of the transitional region in the isothermal local loading forming (ILLF) of large-scale Ti-alloy ribweb components. However, the final quality of the transitional region may be deteriorated by uncontrollable factors, such as the manufacturing tolerance of the preforming billet, fluctuation of the stroke length, and friction factor. Thus, a dual-response surface method (RSM)-based robust optimization of the billet was proposed to address the uncontrollable factors in transi- tional region of the ILLF. Given that the die underfilling and folding defect are two key factors that influence the forming quality of the transitional region, minimizing the mean and standard deviation of the die underfilling rate and avoiding folding defect were defined as the objective function and constraint condition in robust optimization. Then, the cross array design was constructed, a dual-RSM model was established for the mean and standard deviation of the die underfilling rate by considering the size parameters of the billet and uncontrollable factors. Subsequently, an optimum solution was derived to achieve the robust optimization of the billet. A case study on robust optimization was conducted. Good results were attained for improving the die filling and avoiding folding defect, suggesting that the robust optimization of the billet in the transitional region of the ILLF was efficient and reliable.展开更多
The isothermal local loading forming technology provides a feasible way to form Ti-alloy large-scale rib-web components in aerospace and aviation fields.However,the local loading process forming limit is restricted by...The isothermal local loading forming technology provides a feasible way to form Ti-alloy large-scale rib-web components in aerospace and aviation fields.However,the local loading process forming limit is restricted by forming defects in the transitional region.In this work,the feasibility of controlling forming defects and improving the process forming limit by adjusting die parameters is explored through finite element(FE) simulation.It is found that the common cavum and folding defects in the transitional region are significantly influenced by the fillet radii of left rib and middle rib,respectively.The cavum and folding defects can be effectively controlled by increasing the fillet radii of left rib and middle rib,respectively.The process forming limits considering forming defects in the transitional region are determined by the stepwise searching method under various die parameters.Moreover,the relationship between the process forming limit and die parameters is developed through the response surface methodology(RSM).The developed RSM models suggest that increasing the fillet radii of left and middle ribs is effective to improve the process forming limit during local loading forming of rib-web components.The results will provide technical basis for the design of die parameters and the reduction amount,which is of great importance to control forming defects and improve the process forming limit in local loading forming of Ti-alloy large-scale rib-web components.展开更多
Recent success in strain engineering has triggered tremendous interest in its study and potential applications in nanodevice design. In this paper, we establish a coupled piezoelectric/semiconducting model for a wurtz...Recent success in strain engineering has triggered tremendous interest in its study and potential applications in nanodevice design. In this paper, we establish a coupled piezoelectric/semiconducting model for a wurtzite structure ZnO nanofiber under the local mechanical loading. The energy band structure tuned by the local mechanical loading and local length is calculated via an eight-band k·p method, which includes the coupling of valance and conduction bands. Poisson's effect on the distribution of electric potential inversely depends on the local mechanical loading. Numerical results reveal that both the applied local mechanical loading and the local length exhibit obvious tuning effects on the electric potential and energy band. The band gap at band edges varies linearly with the applied loading. Changing the local length shifts the energy band which is far away from the band edges. This study will be useful in the electronic and optical enhancement of semiconductor devices.展开更多
3D and 2D closed form plate models are here applied to static analysis of simply supported square isotropic plates. 2D theories are hierarchically classified on the basis of the accuracy of the displacements and stres...3D and 2D closed form plate models are here applied to static analysis of simply supported square isotropic plates. 2D theories are hierarchically classified on the basis of the accuracy of the displacements and stresses obtained by comparison to the 3D exact results that could be assumed by the reader as benchmark for further analyses. Attention is mainly paid on localized loading conditions, that is, piecewise constant load. Also bi-sinusoidal and uniformly distributed loadings are taken into account. All of those configurations are considered in order to investigate the behavior of the 2D models in the case of continu- ous/uncontinuous, centric or off-centric loading conditions. The ratio between the side length a and the plate thickness h has been assumed as analysis parameter. Higher order 2D models yield accurate results for any considered load condition in the case of moderately thick plates, a/h=10. In the case of thick plates, a/h=5, and continuous/uncontinuous centric loading conditions high accuracy is also obtained. For the considered off-centric load condition and thick plates good results are provided for some output quantities. A better solution could be achieved by simply increasing the polynomial approximation order of the axiomatic 2D displacement field.展开更多
The parametric excited vibration of a pipe under thermal loading may occur because the fluid is often transported heatedly. The effects of thermal loading on the pipe stability and local bifurcations have rarely been ...The parametric excited vibration of a pipe under thermal loading may occur because the fluid is often transported heatedly. The effects of thermal loading on the pipe stability and local bifurcations have rarely been studied. The stability and the local bifurcations of the lateral parametric resonance of the pipe induced by the pulsating fluid velocity and the thermal loading are studied. A mathematical model for a simply supported pipe is developed according to the Hamilton principle. Two partial differential equations describing the lateral and longitudinal vibration are obtained. The singularity theory is utilized to anMyze the stability and the bifurcation of the system solutions. The transition sets and the bifurcation diagrams are obtained both in the unfolding parameter space and the physical parameter space, which can reveal the relationship between the thermal field parameter and the dynamic behaviors of the pipe. The frequency response and the relationship between the critical thermal rate and the pulsating fluid velocity are obtained. The numerical results demonstrate the accuracy of the single-mode expansion of the solution and the stability and local bifurcation analyses. It also confirms the existence of the chaos. The presented work can provide valuable information for the design of the pipeline and the controllers to prevent the structural instability.展开更多
Structural health monitoring(SHM)in service has attracted increasing attention for years.Load localization on a structure is studied hereby.Two algorithms,i.e.,support vector machine(SVM)method and back propagation ne...Structural health monitoring(SHM)in service has attracted increasing attention for years.Load localization on a structure is studied hereby.Two algorithms,i.e.,support vector machine(SVM)method and back propagation neural network(BPNN)algorithm,are proposed to identify the loading positions individually.The feasibility of the suggested methods is evaluated through an experimental program on a carbon fiber reinforced plastic laminate.The experimental tests involve in application of four optical fiber-based sensors for strain measurement at discrete points.The sensors are specially designed fiber Bragg grating(FBG)in small diameter.The small-diameter FBG sensors are arrayed in 2-D on the laminate surface.The testing results indicate that the loading position could be detected by the proposed method.Using SVM method,the 2-D FBG sensors can approximate the loading location with maximum error less than 14 mm.However,the maximum localization error could be limited to about 1 mm by applying the BPNN algorithm.It is mainly because the convergence conditions(mean square error)can be set in advance,while SVM cannot.展开更多
In this paper, we use the method of mixed-type series to derive the analytical solutions of cylindrical shell, which is simply supported along the transverse edges and subjected to the local vertical loads, and give t...In this paper, we use the method of mixed-type series to derive the analytical solutions of cylindrical shell, which is simply supported along the transverse edges and subjected to the local vertical loads, and give the analytical expressions of the solutions for this kind of shell under five types of local vertical loading. A numerical example for a cylindrical shell roof, which is simply supported along the trans verse edges and is free along the longitudinal edges, is given in this paper and from the calculated results it may he seen that the convergence of the solutions is considerably satisfactory. Using the solutions of this paper, we can deal with some practical problems of underground structure.展开更多
The stability and local bifurcation of the lateral parameter-excited resonance of pipes induced by the pulsating fluid velocity and thermal load are studied. A mathematical model for a simply supported pipe is develop...The stability and local bifurcation of the lateral parameter-excited resonance of pipes induced by the pulsating fluid velocity and thermal load are studied. A mathematical model for a simply supported pipe is developed according to Hamilton principle. The Galerkin method is adopted to discretize the partial differential equations to the ordinary differential equations. The method of multiple scales and the singularity theory are utilized to analyze the stability and bifurcation of the trivial and non-trivial solutions. The transition sets and bifurcation diagrams are obtained both in the unfolding parameter space and physical parameter space, which can reveal the relationship between the thermal field parameter and the dynamic behaviors of the pipe. The numerical results demonstrate the accuracy of the single-mode expansion of the solution and verify the stability and local bifurcation analyses. The critical thermal rates are obtained both by the numerical simulation and the local bifurcation analysis. The natural frequency of lateral vibration decreases as the mean fluid velocity or the thermal rate increases according to the numerical results. The present work can provide valuable information for the design of the pipeline and controllers to prevent structural instability.展开更多
This paper presents an optimization technique coupling two optimization techniques for solving Economic Emission Load Dispatch Optimization Problem EELD. The proposed approach integrates the merits of both genetic alg...This paper presents an optimization technique coupling two optimization techniques for solving Economic Emission Load Dispatch Optimization Problem EELD. The proposed approach integrates the merits of both genetic algorithm (GA) and local search (LS), where it maintains a finite-sized archive of non-dominated solutions which gets iteratively updated in the presence of new solutions based on the concept of ε-dominance. To improve the solution quality, local search technique was applied as neighborhood search engine, where it intends to explore the less-crowded area in the current archive to possibly obtain more non-dominated solutions. TOPSIS technique can incorporate relative weights of criterion importance, which has been implemented to identify best compromise solution, which will satisfy the different goals to some extent. Several optimization runs of the proposed approach are carried out on the standard IEEE 30-bus 6-genrator test system. The comparison demonstrates the superiority of the proposed approach and confirms its potential to solve the multiobjective EELD problem.展开更多
By using 11 global ocean tide models and tidal gauge data obtained in the East China Sea and South China Sea, the influence of the ocean loading on gravity field in China and its neighbor area is calculated in this pa...By using 11 global ocean tide models and tidal gauge data obtained in the East China Sea and South China Sea, the influence of the ocean loading on gravity field in China and its neighbor area is calculated in this paper. Furthermore, the differences between the results from original global models and modified models with local tides are discussed based on above calculation. The comparison shows that the differences at the position near the sea are so large that the local tides must be taken into account in the calculation. When the global ocean tide models of CSR4.0, FES02, GOT00, NAO99 and ORI96 are chosen, the local effect for M2 is less than 0.10 × 10-8 m·s-2 over the area far away from sea. And the local effect for O1 is less than 0.05 × 10-8 m·s-2 over that area when choosing AG95 or CSR3.0 models. This numerical result demonstrates that the choice of model is a complex problem because of the inconsistent accuracy of the models over the areas of East and South China Seas.展开更多
The mechanical behavior of rock under uniaxial tensile loading is different from that of rock under compressive loads. A micromechanics-based model was proposed for mesoscopic heterogeneous brittle rock undergoing irr...The mechanical behavior of rock under uniaxial tensile loading is different from that of rock under compressive loads. A micromechanics-based model was proposed for mesoscopic heterogeneous brittle rock undergoing irreversible changes of their microscopic structures due to microcrack growth. The complete stress-strain relation including linear elasticity, nonlinear hardening,rapid stress drop and strain softening was obtained. The influence of all microcracks with different sizes and orientations were introduced into the constitutive relation by using the probability density function describing the distribution of orientations and the probability density function describing the distribution of sizes. The influence of Weibull distribution describing the distribution of orientations and Rayleigh function describing the distribution of sizes on the constitutive relation were researched. Theoretical predictions have shown to be consistent with the experimental results.展开更多
A micromechanics-based model is established. The model takes the interaction among sliding cracks into account, and it is able to quantify the effect of various parameters on the localization condition of damage and d...A micromechanics-based model is established. The model takes the interaction among sliding cracks into account, and it is able to quantify the effect of various parameters on the localization condition of damage and deformation for brittle rock subjected to compressive loads. The closed-form explicit expression for the complete stress-strain relation of rock containing microcracks subjected to compressive loads was obtained. It is showed that the complete stress-strain relation includes linear elasticity,nonlinear hardening,rapid stress drop and strain softening.The behavior of rapid stress drop and strain softening is due to localization of deformation and damage. Theoretical predictions have shown to be consistent with the experimental results.展开更多
Short-term load forecasting is a basis of power system dispatching and operation. In order to improve the short term power load precision, a novel approach for short-term load forecasting is presented based on local m...Short-term load forecasting is a basis of power system dispatching and operation. In order to improve the short term power load precision, a novel approach for short-term load forecasting is presented based on local mean decomposition (LMD) and the radial basis function neural network method (RBFNN). Firstly, the decomposition of LMD method based on characteristics of load data then the decomposed data are respectively predicted by using the RBF network model and predicted by using the BBO-RBF network model. The simulation results show that the RBF network model optimized by using BBO algorithm is optimized in error performance index, and the prediction accuracy is higher and more effective.展开更多
Due to the heterogeneity of the structure on a scale-free network, making the betweennesses of all nodes become homogeneous by reassigning the weights of nodes or edges is very difficult. In order to take advantage of...Due to the heterogeneity of the structure on a scale-free network, making the betweennesses of all nodes become homogeneous by reassigning the weights of nodes or edges is very difficult. In order to take advantage of the important effect of high degree nodes on the shortest path communication and preferentially deliver packets by them to increase the probability to destination, an adaptive local routing strategy on a scale-free network is proposed, in which the node adjusts the forwarding probability with the dynamical traffic load (packet queue length) and the degree distribution of neighbouring nodes. The critical queue length of a node is set to be proportional to its degree, and the node with high degree has a larger critical queue length to store and forward more packets. When the queue length of a high degree node is shorter than its critical queue length, it has a higher probability to forward packets. After higher degree nodes are saturated (whose queue lengths are longer than their critical queue lengths), more packets will be delivered by the lower degree nodes around them. The adaptive local routing strategy increases the probability of a packet finding its destination quickly, and improves the transmission capacity on the scale-free network by reducing routing hops. The simulation results show that the transmission capacity of the adaptive local routing strategy is larger than that of three previous local routing strategies.展开更多
基金Project (50935007) supported by the National Natural Science Foundation of ChinaProject (2010CB731701) supported by the National Basic Research Program of China
文摘Using simple unequal-thickness billet combining isothermal local loading can control the metal flow and improve the cavity fill in manufacturing process of large-scale rib-web titanium alloy component with low cost and short cycle. The beveling transition pattern is well used for variable-thickness region of billet (VTRB) due to its simple and ample range of transition condition. The transition condition development in the local loading process has a significant influence on dynamic boundary of unrestricted portion of VTRB. With the help of reasonable assumptions, a mathematical model of transition condition development was established by theoretical analysis. The predicted results for local loading process of rib-web component using the established model were compared with the numerical and experimental ones, and the results indicated that the model of transition condition development is reasonable. Using the established model could deal with the dynamic boundary of unrestricted portion of VTRB well, and the model is suitable for the analysis of metal flow and cavity fill in local loading process of multi-ribs component.
基金Project (50935007) supported by the National Natural Science Foundation for Key Program of ChinaProject (2010CB731701) supported by the National Basic Research Program of ChinaProject (50905145) supported by the National Natural Science Foundation of China
文摘In order to study influences of geometric parameters on the T-shaped components local loading process, a new mathematical model considering the fillet radius and draft angle was established by using the slab method. The results obtained by the mathematical model agree with the data form experiment and numerical simulation, and the results are closer to the experimental and simulation results. The influence of draft angle may be neglected under the forming conditions used. The influence of fillet radius is notable, especially in the case that the ratio of fillet radius to rib width is less than 0.75.
基金Projects(51605388,51575449)supported by the National Natural Science Foundation of ChinaProject(B08040)supported by the "111" Project,China+1 种基金Project(131-QP-2015)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),ChinaProject supported by the Open Research Fund of State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology,China
文摘To control the tri-modal microstructure and performance,a prediction model of tri-modal microstructure in the isothermal local loading forming of titanium alloy was developed.The staged isothermal local loading experiment on TA15alloy indicates that there exist four important microstructure evolution phenomena in the development of tri-modal microstructure,i.e.,the generation of lamellarα,content variation of equiaxedα,spatial orientation change of lamellarαand globularization of lamellarα.Considering the laws of these microstructure phenomena,the microstructure model was established to correlate the parameters of tri-modal microstructure and processing conditions.Then,the developed microstructure model was integrated with finite element(FE)model to predict the tri-modal microstructure in the isothermal local loading forming.Its reliability and accuracy were verified by the microstructure observation at different locations of sample.Good agreements between the predicted and experimental results suggest that the developed microstructure model and its combination with FE model are effective in the prediction of tri-modal microstructure in the isothermal local loading forming of TA15alloy.
基金supports of the National Natural Science Foundation of China (No. 51575449)Research Fund of the State Key Laboratory of Solidification Processing (NWPU) of China (No. 104-QP2014)+1 种基金the 111 Project (No. B08040)the Fundamental Research Funds for the Central Universities (3102015AX004)
文摘Avoiding the folding defect and improving the die filling capability in the transitional region are desired in isothermal local loading forming of a large-scale Ti-alloy rib-web component(LTRC). To achieve a high-precision LTRC, the folding evolution and die filling process in the transitional region were investigated by 3 D finite element simulation and experiment using an equal-thickness billet(ETB). It is found that the initial volume distribution in the second-loading region can greatly affect the amount of material transferred into the first-loading region during the second-loading step, and thus lead to the folding defect. Besides, an improper initial volume distribution results in non-concurrent die filling in the cavities of ribs after the second-loading step, and then causes die underfilling. To this end, an unequal-thickness billet(UTB) was employed with the initial volume distribution optimized by the response surface method(RSM). For a certain eigenstructure, the critical value of the percentage of transferred material determined by the ETB was taken as a constraint condition for avoiding the folding defect in the UTB optimization process,and the die underfilling rate was considered as the optimization objective. Then, based on the RSM models of the percentage of transferred material and the die underfilling rate, non-folding parameter combinations and optimum die filling were achieved. Lastly, an optimized UTB was obtained and verified by the simulation and experiment.
基金Acknowledgements The authors would like to gratefully acknowledge the support given by the National Natural Science Foundation of China (Grant No. 51575449), Research Fund of the State Key Laboratory of Solidification Processing (NWPU), China (Grant No. 104-QP-2014), 111 Project (Grant No. B08040), and Fundamental Research Funds for the Central Universities (Grant No. 3102015AX004).
文摘Billet optimization can greatly improve the forming quality of the transitional region in the isothermal local loading forming (ILLF) of large-scale Ti-alloy ribweb components. However, the final quality of the transitional region may be deteriorated by uncontrollable factors, such as the manufacturing tolerance of the preforming billet, fluctuation of the stroke length, and friction factor. Thus, a dual-response surface method (RSM)-based robust optimization of the billet was proposed to address the uncontrollable factors in transi- tional region of the ILLF. Given that the die underfilling and folding defect are two key factors that influence the forming quality of the transitional region, minimizing the mean and standard deviation of the die underfilling rate and avoiding folding defect were defined as the objective function and constraint condition in robust optimization. Then, the cross array design was constructed, a dual-RSM model was established for the mean and standard deviation of the die underfilling rate by considering the size parameters of the billet and uncontrollable factors. Subsequently, an optimum solution was derived to achieve the robust optimization of the billet. A case study on robust optimization was conducted. Good results were attained for improving the die filling and avoiding folding defect, suggesting that the robust optimization of the billet in the transitional region of the ILLF was efficient and reliable.
基金the support of the National Natural Science Foundation of China(Nos.51605388,51675433)111 Project(B08040)+2 种基金the Research Fund of the State Key Laboratory of Solidification Processing(NWPU)in China(Grant No.131-QP-2015)the Fundamental Research Funds for the Central Universitiesthe Open Research Fund of State Key Laboratory of Materials Processing and Die&Mold Technology at Huazhong University of Science and Technology
文摘The isothermal local loading forming technology provides a feasible way to form Ti-alloy large-scale rib-web components in aerospace and aviation fields.However,the local loading process forming limit is restricted by forming defects in the transitional region.In this work,the feasibility of controlling forming defects and improving the process forming limit by adjusting die parameters is explored through finite element(FE) simulation.It is found that the common cavum and folding defects in the transitional region are significantly influenced by the fillet radii of left rib and middle rib,respectively.The cavum and folding defects can be effectively controlled by increasing the fillet radii of left rib and middle rib,respectively.The process forming limits considering forming defects in the transitional region are determined by the stepwise searching method under various die parameters.Moreover,the relationship between the process forming limit and die parameters is developed through the response surface methodology(RSM).The developed RSM models suggest that increasing the fillet radii of left and middle ribs is effective to improve the process forming limit during local loading forming of rib-web components.The results will provide technical basis for the design of die parameters and the reduction amount,which is of great importance to control forming defects and improve the process forming limit in local loading forming of Ti-alloy large-scale rib-web components.
基金Project supported by the National Natural Science Foundation of China (No. 11802098)the Chinese Postdoctoral Science Foundation (No. 2019M662589)the Natural Science Foundation of Hubei Province of China (No. 2018CFB111)。
文摘Recent success in strain engineering has triggered tremendous interest in its study and potential applications in nanodevice design. In this paper, we establish a coupled piezoelectric/semiconducting model for a wurtzite structure ZnO nanofiber under the local mechanical loading. The energy band structure tuned by the local mechanical loading and local length is calculated via an eight-band k·p method, which includes the coupling of valance and conduction bands. Poisson's effect on the distribution of electric potential inversely depends on the local mechanical loading. Numerical results reveal that both the applied local mechanical loading and the local length exhibit obvious tuning effects on the electric potential and energy band. The band gap at band edges varies linearly with the applied loading. Changing the local length shifts the energy band which is far away from the band edges. This study will be useful in the electronic and optical enhancement of semiconductor devices.
文摘3D and 2D closed form plate models are here applied to static analysis of simply supported square isotropic plates. 2D theories are hierarchically classified on the basis of the accuracy of the displacements and stresses obtained by comparison to the 3D exact results that could be assumed by the reader as benchmark for further analyses. Attention is mainly paid on localized loading conditions, that is, piecewise constant load. Also bi-sinusoidal and uniformly distributed loadings are taken into account. All of those configurations are considered in order to investigate the behavior of the 2D models in the case of continu- ous/uncontinuous, centric or off-centric loading conditions. The ratio between the side length a and the plate thickness h has been assumed as analysis parameter. Higher order 2D models yield accurate results for any considered load condition in the case of moderately thick plates, a/h=10. In the case of thick plates, a/h=5, and continuous/uncontinuous centric loading conditions high accuracy is also obtained. For the considered off-centric load condition and thick plates good results are provided for some output quantities. A better solution could be achieved by simply increasing the polynomial approximation order of the axiomatic 2D displacement field.
基金Project supported by the National Natural Science Foundation of Shandong Province(No.ZR2013AL017)the National Natural Science Foundation of China(No.11272357)the Fundamental Research Funds for the Central Universities of China(No.11CX04049A)
文摘The parametric excited vibration of a pipe under thermal loading may occur because the fluid is often transported heatedly. The effects of thermal loading on the pipe stability and local bifurcations have rarely been studied. The stability and the local bifurcations of the lateral parametric resonance of the pipe induced by the pulsating fluid velocity and the thermal loading are studied. A mathematical model for a simply supported pipe is developed according to the Hamilton principle. Two partial differential equations describing the lateral and longitudinal vibration are obtained. The singularity theory is utilized to anMyze the stability and the bifurcation of the system solutions. The transition sets and the bifurcation diagrams are obtained both in the unfolding parameter space and the physical parameter space, which can reveal the relationship between the thermal field parameter and the dynamic behaviors of the pipe. The frequency response and the relationship between the critical thermal rate and the pulsating fluid velocity are obtained. The numerical results demonstrate the accuracy of the single-mode expansion of the solution and the stability and local bifurcation analyses. It also confirms the existence of the chaos. The presented work can provide valuable information for the design of the pipeline and the controllers to prevent the structural instability.
基金supported by the National Natural Science Foundation of China(Nos.11402112,51405223)
文摘Structural health monitoring(SHM)in service has attracted increasing attention for years.Load localization on a structure is studied hereby.Two algorithms,i.e.,support vector machine(SVM)method and back propagation neural network(BPNN)algorithm,are proposed to identify the loading positions individually.The feasibility of the suggested methods is evaluated through an experimental program on a carbon fiber reinforced plastic laminate.The experimental tests involve in application of four optical fiber-based sensors for strain measurement at discrete points.The sensors are specially designed fiber Bragg grating(FBG)in small diameter.The small-diameter FBG sensors are arrayed in 2-D on the laminate surface.The testing results indicate that the loading position could be detected by the proposed method.Using SVM method,the 2-D FBG sensors can approximate the loading location with maximum error less than 14 mm.However,the maximum localization error could be limited to about 1 mm by applying the BPNN algorithm.It is mainly because the convergence conditions(mean square error)can be set in advance,while SVM cannot.
基金Project Supported by the National Natural Science Foundation of Chinaby Scientific and Technical Fund of Ministry of UrbanRural Construction and Environmental Protection
文摘In this paper, we use the method of mixed-type series to derive the analytical solutions of cylindrical shell, which is simply supported along the transverse edges and subjected to the local vertical loads, and give the analytical expressions of the solutions for this kind of shell under five types of local vertical loading. A numerical example for a cylindrical shell roof, which is simply supported along the trans verse edges and is free along the longitudinal edges, is given in this paper and from the calculated results it may he seen that the convergence of the solutions is considerably satisfactory. Using the solutions of this paper, we can deal with some practical problems of underground structure.
基金Supported by the Natural Science Foundation of Shandong Province of China(No.ZR2013AL017)the Fundamental Research Funds for the Central Universities of China(No.11CX04049A,No.12CX04071A)
文摘The stability and local bifurcation of the lateral parameter-excited resonance of pipes induced by the pulsating fluid velocity and thermal load are studied. A mathematical model for a simply supported pipe is developed according to Hamilton principle. The Galerkin method is adopted to discretize the partial differential equations to the ordinary differential equations. The method of multiple scales and the singularity theory are utilized to analyze the stability and bifurcation of the trivial and non-trivial solutions. The transition sets and bifurcation diagrams are obtained both in the unfolding parameter space and physical parameter space, which can reveal the relationship between the thermal field parameter and the dynamic behaviors of the pipe. The numerical results demonstrate the accuracy of the single-mode expansion of the solution and verify the stability and local bifurcation analyses. The critical thermal rates are obtained both by the numerical simulation and the local bifurcation analysis. The natural frequency of lateral vibration decreases as the mean fluid velocity or the thermal rate increases according to the numerical results. The present work can provide valuable information for the design of the pipeline and controllers to prevent structural instability.
文摘This paper presents an optimization technique coupling two optimization techniques for solving Economic Emission Load Dispatch Optimization Problem EELD. The proposed approach integrates the merits of both genetic algorithm (GA) and local search (LS), where it maintains a finite-sized archive of non-dominated solutions which gets iteratively updated in the presence of new solutions based on the concept of ε-dominance. To improve the solution quality, local search technique was applied as neighborhood search engine, where it intends to explore the less-crowded area in the current archive to possibly obtain more non-dominated solutions. TOPSIS technique can incorporate relative weights of criterion importance, which has been implemented to identify best compromise solution, which will satisfy the different goals to some extent. Several optimization runs of the proposed approach are carried out on the standard IEEE 30-bus 6-genrator test system. The comparison demonstrates the superiority of the proposed approach and confirms its potential to solve the multiobjective EELD problem.
基金The Key Knowledge Innovation Project (KZCX3-SW-131), the Hundred Talents Program of Chinese Academy of Sciences and the National Natural Science Foundation of China (40374029)
文摘By using 11 global ocean tide models and tidal gauge data obtained in the East China Sea and South China Sea, the influence of the ocean loading on gravity field in China and its neighbor area is calculated in this paper. Furthermore, the differences between the results from original global models and modified models with local tides are discussed based on above calculation. The comparison shows that the differences at the position near the sea are so large that the local tides must be taken into account in the calculation. When the global ocean tide models of CSR4.0, FES02, GOT00, NAO99 and ORI96 are chosen, the local effect for M2 is less than 0.10 × 10-8 m·s-2 over the area far away from sea. And the local effect for O1 is less than 0.05 × 10-8 m·s-2 over that area when choosing AG95 or CSR3.0 models. This numerical result demonstrates that the choice of model is a complex problem because of the inconsistent accuracy of the models over the areas of East and South China Seas.
文摘The mechanical behavior of rock under uniaxial tensile loading is different from that of rock under compressive loads. A micromechanics-based model was proposed for mesoscopic heterogeneous brittle rock undergoing irreversible changes of their microscopic structures due to microcrack growth. The complete stress-strain relation including linear elasticity, nonlinear hardening,rapid stress drop and strain softening was obtained. The influence of all microcracks with different sizes and orientations were introduced into the constitutive relation by using the probability density function describing the distribution of orientations and the probability density function describing the distribution of sizes. The influence of Weibull distribution describing the distribution of orientations and Rayleigh function describing the distribution of sizes on the constitutive relation were researched. Theoretical predictions have shown to be consistent with the experimental results.
文摘A micromechanics-based model is established. The model takes the interaction among sliding cracks into account, and it is able to quantify the effect of various parameters on the localization condition of damage and deformation for brittle rock subjected to compressive loads. The closed-form explicit expression for the complete stress-strain relation of rock containing microcracks subjected to compressive loads was obtained. It is showed that the complete stress-strain relation includes linear elasticity,nonlinear hardening,rapid stress drop and strain softening.The behavior of rapid stress drop and strain softening is due to localization of deformation and damage. Theoretical predictions have shown to be consistent with the experimental results.
文摘Short-term load forecasting is a basis of power system dispatching and operation. In order to improve the short term power load precision, a novel approach for short-term load forecasting is presented based on local mean decomposition (LMD) and the radial basis function neural network method (RBFNN). Firstly, the decomposition of LMD method based on characteristics of load data then the decomposed data are respectively predicted by using the RBF network model and predicted by using the BBO-RBF network model. The simulation results show that the RBF network model optimized by using BBO algorithm is optimized in error performance index, and the prediction accuracy is higher and more effective.
基金Project supported in part by the National Natural Science Foundation of China (Grant Nos. 60872011 and 60502017)the State Key Development Program for Basic Research of China (Grant Nos. 2009CB320504 and 2010CB731800)Program for New Century Excellent Talents in University
文摘Due to the heterogeneity of the structure on a scale-free network, making the betweennesses of all nodes become homogeneous by reassigning the weights of nodes or edges is very difficult. In order to take advantage of the important effect of high degree nodes on the shortest path communication and preferentially deliver packets by them to increase the probability to destination, an adaptive local routing strategy on a scale-free network is proposed, in which the node adjusts the forwarding probability with the dynamical traffic load (packet queue length) and the degree distribution of neighbouring nodes. The critical queue length of a node is set to be proportional to its degree, and the node with high degree has a larger critical queue length to store and forward more packets. When the queue length of a high degree node is shorter than its critical queue length, it has a higher probability to forward packets. After higher degree nodes are saturated (whose queue lengths are longer than their critical queue lengths), more packets will be delivered by the lower degree nodes around them. The adaptive local routing strategy increases the probability of a packet finding its destination quickly, and improves the transmission capacity on the scale-free network by reducing routing hops. The simulation results show that the transmission capacity of the adaptive local routing strategy is larger than that of three previous local routing strategies.