Using simple unequal-thickness billet combining isothermal local loading can control the metal flow and improve the cavity fill in manufacturing process of large-scale rib-web titanium alloy component with low cost an...Using simple unequal-thickness billet combining isothermal local loading can control the metal flow and improve the cavity fill in manufacturing process of large-scale rib-web titanium alloy component with low cost and short cycle. The beveling transition pattern is well used for variable-thickness region of billet (VTRB) due to its simple and ample range of transition condition. The transition condition development in the local loading process has a significant influence on dynamic boundary of unrestricted portion of VTRB. With the help of reasonable assumptions, a mathematical model of transition condition development was established by theoretical analysis. The predicted results for local loading process of rib-web component using the established model were compared with the numerical and experimental ones, and the results indicated that the model of transition condition development is reasonable. Using the established model could deal with the dynamic boundary of unrestricted portion of VTRB well, and the model is suitable for the analysis of metal flow and cavity fill in local loading process of multi-ribs component.展开更多
In order to study influences of geometric parameters on the T-shaped components local loading process, a new mathematical model considering the fillet radius and draft angle was established by using the slab method. T...In order to study influences of geometric parameters on the T-shaped components local loading process, a new mathematical model considering the fillet radius and draft angle was established by using the slab method. The results obtained by the mathematical model agree with the data form experiment and numerical simulation, and the results are closer to the experimental and simulation results. The influence of draft angle may be neglected under the forming conditions used. The influence of fillet radius is notable, especially in the case that the ratio of fillet radius to rib width is less than 0.75.展开更多
To control the tri-modal microstructure and performance,a prediction model of tri-modal microstructure in the isothermal local loading forming of titanium alloy was developed.The staged isothermal local loading experi...To control the tri-modal microstructure and performance,a prediction model of tri-modal microstructure in the isothermal local loading forming of titanium alloy was developed.The staged isothermal local loading experiment on TA15alloy indicates that there exist four important microstructure evolution phenomena in the development of tri-modal microstructure,i.e.,the generation of lamellarα,content variation of equiaxedα,spatial orientation change of lamellarαand globularization of lamellarα.Considering the laws of these microstructure phenomena,the microstructure model was established to correlate the parameters of tri-modal microstructure and processing conditions.Then,the developed microstructure model was integrated with finite element(FE)model to predict the tri-modal microstructure in the isothermal local loading forming.Its reliability and accuracy were verified by the microstructure observation at different locations of sample.Good agreements between the predicted and experimental results suggest that the developed microstructure model and its combination with FE model are effective in the prediction of tri-modal microstructure in the isothermal local loading forming of TA15alloy.展开更多
Recent success in strain engineering has triggered tremendous interest in its study and potential applications in nanodevice design. In this paper, we establish a coupled piezoelectric/semiconducting model for a wurtz...Recent success in strain engineering has triggered tremendous interest in its study and potential applications in nanodevice design. In this paper, we establish a coupled piezoelectric/semiconducting model for a wurtzite structure ZnO nanofiber under the local mechanical loading. The energy band structure tuned by the local mechanical loading and local length is calculated via an eight-band k·p method, which includes the coupling of valance and conduction bands. Poisson's effect on the distribution of electric potential inversely depends on the local mechanical loading. Numerical results reveal that both the applied local mechanical loading and the local length exhibit obvious tuning effects on the electric potential and energy band. The band gap at band edges varies linearly with the applied loading. Changing the local length shifts the energy band which is far away from the band edges. This study will be useful in the electronic and optical enhancement of semiconductor devices.展开更多
3D and 2D closed form plate models are here applied to static analysis of simply supported square isotropic plates. 2D theories are hierarchically classified on the basis of the accuracy of the displacements and stres...3D and 2D closed form plate models are here applied to static analysis of simply supported square isotropic plates. 2D theories are hierarchically classified on the basis of the accuracy of the displacements and stresses obtained by comparison to the 3D exact results that could be assumed by the reader as benchmark for further analyses. Attention is mainly paid on localized loading conditions, that is, piecewise constant load. Also bi-sinusoidal and uniformly distributed loadings are taken into account. All of those configurations are considered in order to investigate the behavior of the 2D models in the case of continu- ous/uncontinuous, centric or off-centric loading conditions. The ratio between the side length a and the plate thickness h has been assumed as analysis parameter. Higher order 2D models yield accurate results for any considered load condition in the case of moderately thick plates, a/h=10. In the case of thick plates, a/h=5, and continuous/uncontinuous centric loading conditions high accuracy is also obtained. For the considered off-centric load condition and thick plates good results are provided for some output quantities. A better solution could be achieved by simply increasing the polynomial approximation order of the axiomatic 2D displacement field.展开更多
In this paper, we use the method of mixed-type series to derive the analytical solutions of cylindrical shell, which is simply supported along the transverse edges and subjected to the local vertical loads, and give t...In this paper, we use the method of mixed-type series to derive the analytical solutions of cylindrical shell, which is simply supported along the transverse edges and subjected to the local vertical loads, and give the analytical expressions of the solutions for this kind of shell under five types of local vertical loading. A numerical example for a cylindrical shell roof, which is simply supported along the trans verse edges and is free along the longitudinal edges, is given in this paper and from the calculated results it may he seen that the convergence of the solutions is considerably satisfactory. Using the solutions of this paper, we can deal with some practical problems of underground structure.展开更多
For ship structural design and good maneuverability in an ice-covered sea, the local and global load of ice cover on ships should be well understood. This paper reviews the extensive work done on ice loads on ships, i...For ship structural design and good maneuverability in an ice-covered sea, the local and global load of ice cover on ships should be well understood. This paper reviews the extensive work done on ice loads on ships, including: (a) Ice pressure and local load determination based on field and model tests; (b) Global ice loads on ships from full-scale field observations, model tests and numerical models under different ice conditions (level ice and pack ice) and ship operations (maneuvering and mooring). Spe- cial attention is paid to the discrete element simulation of global ice loads on ships; and (c) Analytical solutions and numerical models of impact loads of icebergs on ships for polar navigation. Finally, research potential in these areas is discussed.展开更多
In this study, the aerodynamic characteristics of tall buildings with corner modifications (e.g., local wind force coefficients, mean pressure distributions, normalized power spectrum density, and extreme local pressu...In this study, the aerodynamic characteristics of tall buildings with corner modifications (e.g., local wind force coefficients, mean pressure distributions, normalized power spectrum density, and extreme local pressure) were examined. Wind tunnel experiments were conducted to measure the wind pressures on building models with different heights and recessed corners of different ratios. At a wind direction of a = 0° (i.e., wind blowing on the front of a building), corner modifications effectively reduced wind forces in all cases. Specifically, small corner modification ratios reduced wind forces more effectively than their larger counterparts. However, corner modifications resulted in extreme local pressure on building surfaces. In addition, for small corner modification ratios, the probability of extreme local pressure occurring at a = 0° was high. This probability was also high for large corner modification ratios at a = 15° (i.e., wind blowing slightly obliquely on the front of a building) because wind blowing obliquely creates substantial vortex shedding on one side surface and extreme negative pressure over one building side surface. Results of computational fluid dynamic modeling were adopted to determine details of the aerodynamic characteristics of tall buildings with corner modifications.展开更多
A structure of logical hierarchical cluster for the distributed multimedia on demand server is proposed. The architecture is mainly composed of the network topology and the resource management of all server nodes. Ins...A structure of logical hierarchical cluster for the distributed multimedia on demand server is proposed. The architecture is mainly composed of the network topology and the resource management of all server nodes. Instead of the physical network hierarchy or the independent management hierarchy, the nodes are organized into a logically hieraxchical cluster according to the multimedia block they caches in the midderware layer. The process of a member joining/leaving or the structure adjustment cooperatively implemented by all members is concerned with decentralized maintenance of the logical cluster hierarchy. As the root of each logically hierarchical cluster is randomly mapped into the system, the logical structure of a multimedia block is dynamically expanded across some regions by the two replication policies in different load state respectively. The local load diversion is applied to fine-tune the load of nodes within a local region but belongs to different logical hierarchies. Guaranteed by the dynamic expansion of a logical structure and the load diversion of a local region, the users always select a closest idle node from the logical hierarchy under the condition of topology integration with resource management.展开更多
Avoiding the folding defect and improving the die filling capability in the transitional region are desired in isothermal local loading forming of a large-scale Ti-alloy rib-web component(LTRC). To achieve a high-pr...Avoiding the folding defect and improving the die filling capability in the transitional region are desired in isothermal local loading forming of a large-scale Ti-alloy rib-web component(LTRC). To achieve a high-precision LTRC, the folding evolution and die filling process in the transitional region were investigated by 3 D finite element simulation and experiment using an equal-thickness billet(ETB). It is found that the initial volume distribution in the second-loading region can greatly affect the amount of material transferred into the first-loading region during the second-loading step, and thus lead to the folding defect. Besides, an improper initial volume distribution results in non-concurrent die filling in the cavities of ribs after the second-loading step, and then causes die underfilling. To this end, an unequal-thickness billet(UTB) was employed with the initial volume distribution optimized by the response surface method(RSM). For a certain eigenstructure, the critical value of the percentage of transferred material determined by the ETB was taken as a constraint condition for avoiding the folding defect in the UTB optimization process,and the die underfilling rate was considered as the optimization objective. Then, based on the RSM models of the percentage of transferred material and the die underfilling rate, non-folding parameter combinations and optimum die filling were achieved. Lastly, an optimized UTB was obtained and verified by the simulation and experiment.展开更多
Billet optimization can greatly improve the forming quality of the transitional region in the isothermal local loading forming (ILLF) of large-scale Ti-alloy ribweb components. However, the final quality of the tran...Billet optimization can greatly improve the forming quality of the transitional region in the isothermal local loading forming (ILLF) of large-scale Ti-alloy ribweb components. However, the final quality of the transitional region may be deteriorated by uncontrollable factors, such as the manufacturing tolerance of the preforming billet, fluctuation of the stroke length, and friction factor. Thus, a dual-response surface method (RSM)-based robust optimization of the billet was proposed to address the uncontrollable factors in transi- tional region of the ILLF. Given that the die underfilling and folding defect are two key factors that influence the forming quality of the transitional region, minimizing the mean and standard deviation of the die underfilling rate and avoiding folding defect were defined as the objective function and constraint condition in robust optimization. Then, the cross array design was constructed, a dual-RSM model was established for the mean and standard deviation of the die underfilling rate by considering the size parameters of the billet and uncontrollable factors. Subsequently, an optimum solution was derived to achieve the robust optimization of the billet. A case study on robust optimization was conducted. Good results were attained for improving the die filling and avoiding folding defect, suggesting that the robust optimization of the billet in the transitional region of the ILLF was efficient and reliable.展开更多
The isothermal local loading forming technology provides a feasible way to form Ti-alloy large-scale rib-web components in aerospace and aviation fields.However,the local loading process forming limit is restricted by...The isothermal local loading forming technology provides a feasible way to form Ti-alloy large-scale rib-web components in aerospace and aviation fields.However,the local loading process forming limit is restricted by forming defects in the transitional region.In this work,the feasibility of controlling forming defects and improving the process forming limit by adjusting die parameters is explored through finite element(FE) simulation.It is found that the common cavum and folding defects in the transitional region are significantly influenced by the fillet radii of left rib and middle rib,respectively.The cavum and folding defects can be effectively controlled by increasing the fillet radii of left rib and middle rib,respectively.The process forming limits considering forming defects in the transitional region are determined by the stepwise searching method under various die parameters.Moreover,the relationship between the process forming limit and die parameters is developed through the response surface methodology(RSM).The developed RSM models suggest that increasing the fillet radii of left and middle ribs is effective to improve the process forming limit during local loading forming of rib-web components.The results will provide technical basis for the design of die parameters and the reduction amount,which is of great importance to control forming defects and improve the process forming limit in local loading forming of Ti-alloy large-scale rib-web components.展开更多
In order to obtain the characteristics of the effects of cyclic impact loading on the damage of coal-rock in the presence of a local static load constraint,the evolution of the damage factor and the fracture rate duri...In order to obtain the characteristics of the effects of cyclic impact loading on the damage of coal-rock in the presence of a local static load constraint,the evolution of the damage factor and the fracture rate during the process and incremental cyclic impact on raw coal and briquettes has been studied.Experimental results show that the presence of local static load restraint improves the impact resistance of the coal-rock,and the damage factor of the coal-rock shows obvious zoning characteristics.When the coal-rock is in an elastic state,the partition with a larger static load restraint area has stronger impact resistance,when the coal-rock is in a plastic state,the partition with a larger static load restraint area has a weaker impact resistance.Increasing impulsive cyclic impacts have a higher damage efficiency to coal-rock than constant impulsive cyclic impacts.The difference in rock breaking efficiency between the two cyclic impact methods is mainly reflected in the partition with the largest constrained area.The crack propagation on the coal-rock surface is more consistent with the partition characteristics of the damage factor.When the static load constrained zone is in an elastic state,the static load has an inhibitory effect on the crack growth.When the static load confinement zone is in a plastic state,the cracks mainly propagate in the static load confinement zone,and the constrained zone mainly consists of tensile cracks that grow in the vertical direction,while the cracks in the non-constrained zone mainly grow in an oblique direction.Finally,fracture mechanics was applied to analyze the failure type of the sample.展开更多
In this paper,an improved load sharing strategy is proposed for distributed generation units(DGs)connected in a microgrid.Conventional frequency and voltage droop control result in unacceptable active and reactive pow...In this paper,an improved load sharing strategy is proposed for distributed generation units(DGs)connected in a microgrid.Conventional frequency and voltage droop control result in unacceptable active and reactive power sharing.The proposed method formulates a suitable algorithm for load sharing in the islanded microgrid.The feeder power loss and the line impedance voltage drops are minimized so as to regulate the voltage at the point of common coupling(PCC)at its nominal value.The desired DG output voltages are calculated and a linear relationship is obtained between the shared active and reactive powers and the DG output voltages.A master DG controller sets the frequency which is followed by other DG units.The reference powers for the DG units are adjusted so as to maintain the rated PCC voltage.The proposed strategy is verified taking into account the DG ratings,unequal line impedance drops,feeder losses,change in system impedance and effect of DG local loads and formulates an improved power sharing strategy that also facilitates PCC voltage regulation under variable loading conditions.Simulation and experimental results are presented to verify the effectiveness of the proposed method.展开更多
基金Project (50935007) supported by the National Natural Science Foundation of ChinaProject (2010CB731701) supported by the National Basic Research Program of China
文摘Using simple unequal-thickness billet combining isothermal local loading can control the metal flow and improve the cavity fill in manufacturing process of large-scale rib-web titanium alloy component with low cost and short cycle. The beveling transition pattern is well used for variable-thickness region of billet (VTRB) due to its simple and ample range of transition condition. The transition condition development in the local loading process has a significant influence on dynamic boundary of unrestricted portion of VTRB. With the help of reasonable assumptions, a mathematical model of transition condition development was established by theoretical analysis. The predicted results for local loading process of rib-web component using the established model were compared with the numerical and experimental ones, and the results indicated that the model of transition condition development is reasonable. Using the established model could deal with the dynamic boundary of unrestricted portion of VTRB well, and the model is suitable for the analysis of metal flow and cavity fill in local loading process of multi-ribs component.
基金Project (50935007) supported by the National Natural Science Foundation for Key Program of ChinaProject (2010CB731701) supported by the National Basic Research Program of ChinaProject (50905145) supported by the National Natural Science Foundation of China
文摘In order to study influences of geometric parameters on the T-shaped components local loading process, a new mathematical model considering the fillet radius and draft angle was established by using the slab method. The results obtained by the mathematical model agree with the data form experiment and numerical simulation, and the results are closer to the experimental and simulation results. The influence of draft angle may be neglected under the forming conditions used. The influence of fillet radius is notable, especially in the case that the ratio of fillet radius to rib width is less than 0.75.
基金Projects(51605388,51575449)supported by the National Natural Science Foundation of ChinaProject(B08040)supported by the "111" Project,China+1 种基金Project(131-QP-2015)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),ChinaProject supported by the Open Research Fund of State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology,China
文摘To control the tri-modal microstructure and performance,a prediction model of tri-modal microstructure in the isothermal local loading forming of titanium alloy was developed.The staged isothermal local loading experiment on TA15alloy indicates that there exist four important microstructure evolution phenomena in the development of tri-modal microstructure,i.e.,the generation of lamellarα,content variation of equiaxedα,spatial orientation change of lamellarαand globularization of lamellarα.Considering the laws of these microstructure phenomena,the microstructure model was established to correlate the parameters of tri-modal microstructure and processing conditions.Then,the developed microstructure model was integrated with finite element(FE)model to predict the tri-modal microstructure in the isothermal local loading forming.Its reliability and accuracy were verified by the microstructure observation at different locations of sample.Good agreements between the predicted and experimental results suggest that the developed microstructure model and its combination with FE model are effective in the prediction of tri-modal microstructure in the isothermal local loading forming of TA15alloy.
基金Project supported by the National Natural Science Foundation of China (No. 11802098)the Chinese Postdoctoral Science Foundation (No. 2019M662589)the Natural Science Foundation of Hubei Province of China (No. 2018CFB111)。
文摘Recent success in strain engineering has triggered tremendous interest in its study and potential applications in nanodevice design. In this paper, we establish a coupled piezoelectric/semiconducting model for a wurtzite structure ZnO nanofiber under the local mechanical loading. The energy band structure tuned by the local mechanical loading and local length is calculated via an eight-band k·p method, which includes the coupling of valance and conduction bands. Poisson's effect on the distribution of electric potential inversely depends on the local mechanical loading. Numerical results reveal that both the applied local mechanical loading and the local length exhibit obvious tuning effects on the electric potential and energy band. The band gap at band edges varies linearly with the applied loading. Changing the local length shifts the energy band which is far away from the band edges. This study will be useful in the electronic and optical enhancement of semiconductor devices.
文摘3D and 2D closed form plate models are here applied to static analysis of simply supported square isotropic plates. 2D theories are hierarchically classified on the basis of the accuracy of the displacements and stresses obtained by comparison to the 3D exact results that could be assumed by the reader as benchmark for further analyses. Attention is mainly paid on localized loading conditions, that is, piecewise constant load. Also bi-sinusoidal and uniformly distributed loadings are taken into account. All of those configurations are considered in order to investigate the behavior of the 2D models in the case of continu- ous/uncontinuous, centric or off-centric loading conditions. The ratio between the side length a and the plate thickness h has been assumed as analysis parameter. Higher order 2D models yield accurate results for any considered load condition in the case of moderately thick plates, a/h=10. In the case of thick plates, a/h=5, and continuous/uncontinuous centric loading conditions high accuracy is also obtained. For the considered off-centric load condition and thick plates good results are provided for some output quantities. A better solution could be achieved by simply increasing the polynomial approximation order of the axiomatic 2D displacement field.
基金Project Supported by the National Natural Science Foundation of Chinaby Scientific and Technical Fund of Ministry of UrbanRural Construction and Environmental Protection
文摘In this paper, we use the method of mixed-type series to derive the analytical solutions of cylindrical shell, which is simply supported along the transverse edges and subjected to the local vertical loads, and give the analytical expressions of the solutions for this kind of shell under five types of local vertical loading. A numerical example for a cylindrical shell roof, which is simply supported along the trans verse edges and is free along the longitudinal edges, is given in this paper and from the calculated results it may he seen that the convergence of the solutions is considerably satisfactory. Using the solutions of this paper, we can deal with some practical problems of underground structure.
基金supported by the Ocean Public Welfare Scientific Research Project of China (Grant No. 201105016,2012418007)the National Natural Science Foundation of China (Grant No.41176012)the American Bureau of Shipping (ABS)
文摘For ship structural design and good maneuverability in an ice-covered sea, the local and global load of ice cover on ships should be well understood. This paper reviews the extensive work done on ice loads on ships, including: (a) Ice pressure and local load determination based on field and model tests; (b) Global ice loads on ships from full-scale field observations, model tests and numerical models under different ice conditions (level ice and pack ice) and ship operations (maneuvering and mooring). Spe- cial attention is paid to the discrete element simulation of global ice loads on ships; and (c) Analytical solutions and numerical models of impact loads of icebergs on ships for polar navigation. Finally, research potential in these areas is discussed.
基金This work was supported by Korea Research Fellowship Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT。
文摘In this study, the aerodynamic characteristics of tall buildings with corner modifications (e.g., local wind force coefficients, mean pressure distributions, normalized power spectrum density, and extreme local pressure) were examined. Wind tunnel experiments were conducted to measure the wind pressures on building models with different heights and recessed corners of different ratios. At a wind direction of a = 0° (i.e., wind blowing on the front of a building), corner modifications effectively reduced wind forces in all cases. Specifically, small corner modification ratios reduced wind forces more effectively than their larger counterparts. However, corner modifications resulted in extreme local pressure on building surfaces. In addition, for small corner modification ratios, the probability of extreme local pressure occurring at a = 0° was high. This probability was also high for large corner modification ratios at a = 15° (i.e., wind blowing slightly obliquely on the front of a building) because wind blowing obliquely creates substantial vortex shedding on one side surface and extreme negative pressure over one building side surface. Results of computational fluid dynamic modeling were adopted to determine details of the aerodynamic characteristics of tall buildings with corner modifications.
文摘A structure of logical hierarchical cluster for the distributed multimedia on demand server is proposed. The architecture is mainly composed of the network topology and the resource management of all server nodes. Instead of the physical network hierarchy or the independent management hierarchy, the nodes are organized into a logically hieraxchical cluster according to the multimedia block they caches in the midderware layer. The process of a member joining/leaving or the structure adjustment cooperatively implemented by all members is concerned with decentralized maintenance of the logical cluster hierarchy. As the root of each logically hierarchical cluster is randomly mapped into the system, the logical structure of a multimedia block is dynamically expanded across some regions by the two replication policies in different load state respectively. The local load diversion is applied to fine-tune the load of nodes within a local region but belongs to different logical hierarchies. Guaranteed by the dynamic expansion of a logical structure and the load diversion of a local region, the users always select a closest idle node from the logical hierarchy under the condition of topology integration with resource management.
基金supports of the National Natural Science Foundation of China (No. 51575449)Research Fund of the State Key Laboratory of Solidification Processing (NWPU) of China (No. 104-QP2014)+1 种基金the 111 Project (No. B08040)the Fundamental Research Funds for the Central Universities (3102015AX004)
文摘Avoiding the folding defect and improving the die filling capability in the transitional region are desired in isothermal local loading forming of a large-scale Ti-alloy rib-web component(LTRC). To achieve a high-precision LTRC, the folding evolution and die filling process in the transitional region were investigated by 3 D finite element simulation and experiment using an equal-thickness billet(ETB). It is found that the initial volume distribution in the second-loading region can greatly affect the amount of material transferred into the first-loading region during the second-loading step, and thus lead to the folding defect. Besides, an improper initial volume distribution results in non-concurrent die filling in the cavities of ribs after the second-loading step, and then causes die underfilling. To this end, an unequal-thickness billet(UTB) was employed with the initial volume distribution optimized by the response surface method(RSM). For a certain eigenstructure, the critical value of the percentage of transferred material determined by the ETB was taken as a constraint condition for avoiding the folding defect in the UTB optimization process,and the die underfilling rate was considered as the optimization objective. Then, based on the RSM models of the percentage of transferred material and the die underfilling rate, non-folding parameter combinations and optimum die filling were achieved. Lastly, an optimized UTB was obtained and verified by the simulation and experiment.
基金Acknowledgements The authors would like to gratefully acknowledge the support given by the National Natural Science Foundation of China (Grant No. 51575449), Research Fund of the State Key Laboratory of Solidification Processing (NWPU), China (Grant No. 104-QP-2014), 111 Project (Grant No. B08040), and Fundamental Research Funds for the Central Universities (Grant No. 3102015AX004).
文摘Billet optimization can greatly improve the forming quality of the transitional region in the isothermal local loading forming (ILLF) of large-scale Ti-alloy ribweb components. However, the final quality of the transitional region may be deteriorated by uncontrollable factors, such as the manufacturing tolerance of the preforming billet, fluctuation of the stroke length, and friction factor. Thus, a dual-response surface method (RSM)-based robust optimization of the billet was proposed to address the uncontrollable factors in transi- tional region of the ILLF. Given that the die underfilling and folding defect are two key factors that influence the forming quality of the transitional region, minimizing the mean and standard deviation of the die underfilling rate and avoiding folding defect were defined as the objective function and constraint condition in robust optimization. Then, the cross array design was constructed, a dual-RSM model was established for the mean and standard deviation of the die underfilling rate by considering the size parameters of the billet and uncontrollable factors. Subsequently, an optimum solution was derived to achieve the robust optimization of the billet. A case study on robust optimization was conducted. Good results were attained for improving the die filling and avoiding folding defect, suggesting that the robust optimization of the billet in the transitional region of the ILLF was efficient and reliable.
基金the support of the National Natural Science Foundation of China(Nos.51605388,51675433)111 Project(B08040)+2 种基金the Research Fund of the State Key Laboratory of Solidification Processing(NWPU)in China(Grant No.131-QP-2015)the Fundamental Research Funds for the Central Universitiesthe Open Research Fund of State Key Laboratory of Materials Processing and Die&Mold Technology at Huazhong University of Science and Technology
文摘The isothermal local loading forming technology provides a feasible way to form Ti-alloy large-scale rib-web components in aerospace and aviation fields.However,the local loading process forming limit is restricted by forming defects in the transitional region.In this work,the feasibility of controlling forming defects and improving the process forming limit by adjusting die parameters is explored through finite element(FE) simulation.It is found that the common cavum and folding defects in the transitional region are significantly influenced by the fillet radii of left rib and middle rib,respectively.The cavum and folding defects can be effectively controlled by increasing the fillet radii of left rib and middle rib,respectively.The process forming limits considering forming defects in the transitional region are determined by the stepwise searching method under various die parameters.Moreover,the relationship between the process forming limit and die parameters is developed through the response surface methodology(RSM).The developed RSM models suggest that increasing the fillet radii of left and middle ribs is effective to improve the process forming limit during local loading forming of rib-web components.The results will provide technical basis for the design of die parameters and the reduction amount,which is of great importance to control forming defects and improve the process forming limit in local loading forming of Ti-alloy large-scale rib-web components.
基金the financial support of the Project supported by Department of Science and Technology of Liaoning province(2023-BS-083)Basic Research Funds of China University of Mining and Technology(Beijing)-Doctoral Outstanding Innovation Talent Cultivation Fund(NO.BBJ2023004).
文摘In order to obtain the characteristics of the effects of cyclic impact loading on the damage of coal-rock in the presence of a local static load constraint,the evolution of the damage factor and the fracture rate during the process and incremental cyclic impact on raw coal and briquettes has been studied.Experimental results show that the presence of local static load restraint improves the impact resistance of the coal-rock,and the damage factor of the coal-rock shows obvious zoning characteristics.When the coal-rock is in an elastic state,the partition with a larger static load restraint area has stronger impact resistance,when the coal-rock is in a plastic state,the partition with a larger static load restraint area has a weaker impact resistance.Increasing impulsive cyclic impacts have a higher damage efficiency to coal-rock than constant impulsive cyclic impacts.The difference in rock breaking efficiency between the two cyclic impact methods is mainly reflected in the partition with the largest constrained area.The crack propagation on the coal-rock surface is more consistent with the partition characteristics of the damage factor.When the static load constrained zone is in an elastic state,the static load has an inhibitory effect on the crack growth.When the static load confinement zone is in a plastic state,the cracks mainly propagate in the static load confinement zone,and the constrained zone mainly consists of tensile cracks that grow in the vertical direction,while the cracks in the non-constrained zone mainly grow in an oblique direction.Finally,fracture mechanics was applied to analyze the failure type of the sample.
文摘In this paper,an improved load sharing strategy is proposed for distributed generation units(DGs)connected in a microgrid.Conventional frequency and voltage droop control result in unacceptable active and reactive power sharing.The proposed method formulates a suitable algorithm for load sharing in the islanded microgrid.The feeder power loss and the line impedance voltage drops are minimized so as to regulate the voltage at the point of common coupling(PCC)at its nominal value.The desired DG output voltages are calculated and a linear relationship is obtained between the shared active and reactive powers and the DG output voltages.A master DG controller sets the frequency which is followed by other DG units.The reference powers for the DG units are adjusted so as to maintain the rated PCC voltage.The proposed strategy is verified taking into account the DG ratings,unequal line impedance drops,feeder losses,change in system impedance and effect of DG local loads and formulates an improved power sharing strategy that also facilitates PCC voltage regulation under variable loading conditions.Simulation and experimental results are presented to verify the effectiveness of the proposed method.