This paper introduces the localized Radon transform (LRT) into time-frequency distributions and presents the localized Radon-Wigner transform (LRWT). The definition of LRWT and a fast algorithm is derived, the propert...This paper introduces the localized Radon transform (LRT) into time-frequency distributions and presents the localized Radon-Wigner transform (LRWT). The definition of LRWT and a fast algorithm is derived, the properties of LRWT and its relationship with Radon-Wigner transform, Wigner distribution (WD), ambiguity function (AF), and generalized-marginal time-frequency distributions are analyzed.展开更多
从众多用户收集的高维数据可用性越来越高,庞大的高维数据涉及用户个人隐私,如何在使用高维数据的同时保护用户的隐私极具挑战性。文中主要关注本地差分隐私下的高维数据发布问题。现有的解决方案首先构建概率图模型,生成输入数据的一...从众多用户收集的高维数据可用性越来越高,庞大的高维数据涉及用户个人隐私,如何在使用高维数据的同时保护用户的隐私极具挑战性。文中主要关注本地差分隐私下的高维数据发布问题。现有的解决方案首先构建概率图模型,生成输入数据的一组带噪声的低维边缘分布,然后使用它们近似输入数据集的联合分布以生成合成数据集。然而,现有方法在计算大量属性对的边缘分布构建概率图模型,以及计算概率图模型中规模较大的属性子集的联合分布时存在局限性。基于此,提出了一种本地差分隐私下的高维数据发布方法PrivHDP(High-dimensional Data Publication Under Local Differential Privacy)。首先,该方法使用随机采样响应代替传统的隐私预算分割策略扰动用户数据,提出自适应边缘分布计算方法计算成对属性的边缘分布构建Markov网。其次,使用新的方法代替互信息度量成对属性间的相关性,引入了基于高通滤波的阈值过滤技术缩减概率图构建过程的搜索空间,结合充分三角化操作和联合树算法获得一组属性子集。最后,基于联合分布分解和冗余消除,计算属性子集上的联合分布。在4个真实数据集上进行实验,结果表明,PrivHDP算法在k-way查询和SVM分类精度方面优于同类算法,验证了所提方法的可用性与高效性。展开更多
鉴于恢复力曲面法(Restoring Force Surface,RFS)和随机森林(Random Forest,RF)模型在参数辨识领域的优越性,结合上述两种方法提出一种新的基于RFS-RF的局部非线性模型辨识方法。首先,针对局部非线性模型求解其动力响应。其次,根据获得...鉴于恢复力曲面法(Restoring Force Surface,RFS)和随机森林(Random Forest,RF)模型在参数辨识领域的优越性,结合上述两种方法提出一种新的基于RFS-RF的局部非线性模型辨识方法。首先,针对局部非线性模型求解其动力响应。其次,根据获得的动力响应计算恢复力曲面与边际谱,然后再通过边际谱求解非线性指标。再次,通过多次改变结构的刚度和阻尼参数生成若干组非线性指标并建立随机森林模型。然后,将新的非线性指标作为预测集输入已经建立的随机森林模型并判断系统的非线性类型和非线性函数形式。最后,采用最小二乘法对局部非线性系统的待求参数进行精确识别。通过一个四层剪切型框架结构模型对所提方法进行验证,研究结果表明:基于RFS-RF的多自由度局部非线性模型辨识方法能够准确识别结构系统的非线性类型、函数形式以及未知参数。展开更多
局部均值分解(Local Mean Decomposition,LMD)将复杂的多分量信号自适应地分解为有限个乘积函数(PF)的和,在计算了各个分量的瞬时幅值(IA)和瞬时频率(IF)后,可以计算出基于LMD的边际谱。针对直接法求取瞬时频率存在端点误差大问题,提出...局部均值分解(Local Mean Decomposition,LMD)将复杂的多分量信号自适应地分解为有限个乘积函数(PF)的和,在计算了各个分量的瞬时幅值(IA)和瞬时频率(IF)后,可以计算出基于LMD的边际谱。针对直接法求取瞬时频率存在端点误差大问题,提出一种改进的直接求取瞬时频率的方法;提出了基于LMD的边际谱的滚动轴承故障诊断方法,将该方法应用于实际滚动轴承故障诊断中,结果表明该方法能有效地提取出滚动轴承的故障特征频率,从而确定故障部位。展开更多
针对LMMDE算法存在的缺陷,提出了余弦度量的多流形最大间距鉴别保持嵌入算法(Multi-manifold Maximal Margin Discriminant Preserving Embedding based on Cosine M easure,CM M M M DPE).该算法首先利用多流形思想将原始样本集中的每...针对LMMDE算法存在的缺陷,提出了余弦度量的多流形最大间距鉴别保持嵌入算法(Multi-manifold Maximal Margin Discriminant Preserving Embedding based on Cosine M easure,CM M M M DPE).该算法首先利用多流形思想将原始样本集中的每个样本分成若干个局部小块样本,形成一个多流形的样本空间.在为流形内的每个局部小块样本确定类间邻域和类内邻域时,采用余弦距离代替欧式距离的度量方式.定义了加权的类间邻域散布矩阵和类内散布矩阵,来描述整个多流形空间中样本之间的相似度,通过相应的准则函数为每个样本流形找到最优投影矩阵,对每个样本流形降维到更低维流形空间中,最后通过计算测试样本流形与训练样本流形的距离来判定测试样本的类别归属.通过在多个人脸库上的实验,验证了本文方法的有效性.展开更多
文摘This paper introduces the localized Radon transform (LRT) into time-frequency distributions and presents the localized Radon-Wigner transform (LRWT). The definition of LRWT and a fast algorithm is derived, the properties of LRWT and its relationship with Radon-Wigner transform, Wigner distribution (WD), ambiguity function (AF), and generalized-marginal time-frequency distributions are analyzed.
文摘从众多用户收集的高维数据可用性越来越高,庞大的高维数据涉及用户个人隐私,如何在使用高维数据的同时保护用户的隐私极具挑战性。文中主要关注本地差分隐私下的高维数据发布问题。现有的解决方案首先构建概率图模型,生成输入数据的一组带噪声的低维边缘分布,然后使用它们近似输入数据集的联合分布以生成合成数据集。然而,现有方法在计算大量属性对的边缘分布构建概率图模型,以及计算概率图模型中规模较大的属性子集的联合分布时存在局限性。基于此,提出了一种本地差分隐私下的高维数据发布方法PrivHDP(High-dimensional Data Publication Under Local Differential Privacy)。首先,该方法使用随机采样响应代替传统的隐私预算分割策略扰动用户数据,提出自适应边缘分布计算方法计算成对属性的边缘分布构建Markov网。其次,使用新的方法代替互信息度量成对属性间的相关性,引入了基于高通滤波的阈值过滤技术缩减概率图构建过程的搜索空间,结合充分三角化操作和联合树算法获得一组属性子集。最后,基于联合分布分解和冗余消除,计算属性子集上的联合分布。在4个真实数据集上进行实验,结果表明,PrivHDP算法在k-way查询和SVM分类精度方面优于同类算法,验证了所提方法的可用性与高效性。
文摘鉴于恢复力曲面法(Restoring Force Surface,RFS)和随机森林(Random Forest,RF)模型在参数辨识领域的优越性,结合上述两种方法提出一种新的基于RFS-RF的局部非线性模型辨识方法。首先,针对局部非线性模型求解其动力响应。其次,根据获得的动力响应计算恢复力曲面与边际谱,然后再通过边际谱求解非线性指标。再次,通过多次改变结构的刚度和阻尼参数生成若干组非线性指标并建立随机森林模型。然后,将新的非线性指标作为预测集输入已经建立的随机森林模型并判断系统的非线性类型和非线性函数形式。最后,采用最小二乘法对局部非线性系统的待求参数进行精确识别。通过一个四层剪切型框架结构模型对所提方法进行验证,研究结果表明:基于RFS-RF的多自由度局部非线性模型辨识方法能够准确识别结构系统的非线性类型、函数形式以及未知参数。
文摘局部均值分解(Local Mean Decomposition,LMD)将复杂的多分量信号自适应地分解为有限个乘积函数(PF)的和,在计算了各个分量的瞬时幅值(IA)和瞬时频率(IF)后,可以计算出基于LMD的边际谱。针对直接法求取瞬时频率存在端点误差大问题,提出一种改进的直接求取瞬时频率的方法;提出了基于LMD的边际谱的滚动轴承故障诊断方法,将该方法应用于实际滚动轴承故障诊断中,结果表明该方法能有效地提取出滚动轴承的故障特征频率,从而确定故障部位。
文摘针对LMMDE算法存在的缺陷,提出了余弦度量的多流形最大间距鉴别保持嵌入算法(Multi-manifold Maximal Margin Discriminant Preserving Embedding based on Cosine M easure,CM M M M DPE).该算法首先利用多流形思想将原始样本集中的每个样本分成若干个局部小块样本,形成一个多流形的样本空间.在为流形内的每个局部小块样本确定类间邻域和类内邻域时,采用余弦距离代替欧式距离的度量方式.定义了加权的类间邻域散布矩阵和类内散布矩阵,来描述整个多流形空间中样本之间的相似度,通过相应的准则函数为每个样本流形找到最优投影矩阵,对每个样本流形降维到更低维流形空间中,最后通过计算测试样本流形与训练样本流形的距离来判定测试样本的类别归属.通过在多个人脸库上的实验,验证了本文方法的有效性.