We reported a low-cost and easy-to-make method to effectively generate quantum dot(QD)states in 2D hBN films for quantum emissions at room temperature by utilizing silica nanospheres,in comparison with the sophisticat...We reported a low-cost and easy-to-make method to effectively generate quantum dot(QD)states in 2D hBN films for quantum emissions at room temperature by utilizing silica nanospheres,in comparison with the sophisticated nanofabrication method reported in previous studies.The QDs created in 2D hBN films using silica nanospheres exhibit pronounced photon emissions with a good photo-stability in air,a narrow distribution of the emission peaks within the range of 580-620 nm,and a directional emission pattern,behaving as a single electric dipole.Our work develops the method of controllable fabrication of quantum emitters in 2D materials by using nano materials and structures.展开更多
Electronic properties of two-dimensional(2D) materials can be strongly modulated by localized strain. The typical spatial resolution of conventional Kelvin probe force microscopy(KPFM) is usually limited in a few hund...Electronic properties of two-dimensional(2D) materials can be strongly modulated by localized strain. The typical spatial resolution of conventional Kelvin probe force microscopy(KPFM) is usually limited in a few hundreds of nanometers, and it is difficult to characterize localized electronic properties of 2D materials at nanoscales. Herein, tip-enhanced Raman spectroscopy(TERS) is proposed to combine with KPFM to break this restriction. TERS scan is conducted on ReS2bubbles deposited on a rough Au thin film to obtain strain distribution by using the Raman peak shift. The localized contact potential difference(CPD) is inversely calculated with a higher spatial resolution by using strain measured by TERS and CPD-strain working curve obtained using conventional KPFM and atomic force microscopy. This method enhances the spatial resolution of CPD measurements and can be potentially used to characterize localized electronic properties of 2D materials.展开更多
To address the problems of strain localization, the exact Mohr-Coulomb (MC) model is used based on second-order cone programming (mpcFEM-SOCP) in the framework of micropolar continuum finite element method. Using the ...To address the problems of strain localization, the exact Mohr-Coulomb (MC) model is used based on second-order cone programming (mpcFEM-SOCP) in the framework of micropolar continuum finite element method. Using the uniaxial compression test, we focused on the earth pressure problem of rigid wall segment involving non-associated plasticity. The numerical results reveal that when mpcFEM-SOCP is applied, the problems of mesh dependency can be effectively addressed. For geotechnical strain localization analysis involving non-associated MC plasticity, mpcFEM-SOCP in conjunction with the pseudo-time discrete scheme can improve the numerical stability and avoid the unreasonable softening issue in the pressure-displacement curves, which may be encountered in the conventional FEM. It also shows that the pressure-displacement responses calculated by mpcFEM-SOCP with the pseudo-time discrete scheme are higher than those calculated by mpcFEM-SOCP with the Davis scheme. The inclination angle of shear band predicted by mpcFEM-SOCP with the pseudo-time discrete scheme agrees well with the theoretical solution of non-associated MC plasticity.展开更多
Detection of local strain at the nanometer scale with high sensitivity remains challenging.Here we report near-field infrared nano-imaging of local strains in bilayer graphene by probing strain-induced shifts of phono...Detection of local strain at the nanometer scale with high sensitivity remains challenging.Here we report near-field infrared nano-imaging of local strains in bilayer graphene by probing strain-induced shifts of phonon frequency.As a non-polar crystal,intrinsic bilayer graphene possesses little infrared response at its transverse optical phonon frequency.The reported optical detection of local strain is enabled by applying a vertical electrical field that breaks the symmetry of the two graphene layers and introduces finite electrical dipole moment to graphene phonon.The activated phonon further interacts with continuum electronic transitions,and generates a strong Fano resonance.The resulted Fano resonance features a very sharp near-field infrared scattering peak,which leads to an extraordinary sensitivity of-0.002%for the strain detection.Our results demonstrate the first nano-scale near-field Fano resonance,provide a new way to probe local strains with high sensitivity in non-polar crystals,and open exciting possibilities for studying strain-induced rich phenomena.展开更多
The coupling effects of the metastable austenitic phase and the amorphous matrix in a transformation-induced plasticity(TRIP)-reinforced bulk metallic glass(BMG)composite under compressive loading were investigated by...The coupling effects of the metastable austenitic phase and the amorphous matrix in a transformation-induced plasticity(TRIP)-reinforced bulk metallic glass(BMG)composite under compressive loading were investigated by employing the digital image correlation(DIC)technique.The evolution of local strain field in the crystalline phase and the amorphous matrix was directly monitored,and the contribution from the phase transformation of the metastable austenitic phase was revealed.Local shear strain was found to be effectively consumed by the displacive phase transformation of the metastable austenitic phase,which relaxed the local strain/stress concentration at the interface and thus greatly enhanced the plasticity of the TRIP-reinforced BMG composites.Our current study sheds light on in-depth understanding of the underlying deformation mechanism and the interplay between the amorphous matrix and the metastable crystalline phase during deformation,which is helpful for design of advanced BMG composites with further improved properties.展开更多
The current study performed a finite element analysis of the strain localization behavior of a voided ductile material using a non-local plasticity formulation in which the yield strength depends on both an equivalent...The current study performed a finite element analysis of the strain localization behavior of a voided ductile material using a non-local plasticity formulation in which the yield strength depends on both an equivalent plastic strain measurement (hardening parameter) and Laplacian equivalent. The introduction of gradient terms to the yield function was found to play an important role in simulating the strain localization behavior of the voided ductile material. The effect of the mesh size and characteristic length on the strain localization were also investigated. An FEM simulation based on the proposed non-local plasticity revealed that the load-strain curves of the voided ductile material subjected to plane strain tension converged to one curve, regardless of the mesh size. In addition, the results using non-local plasticity also exhibited that the dependence of the deformation behavior of the material on the mesh size was much less sensitive than that with classical local plasticity and could be successfully eliminated through the introduction of a large value for the characteristic length.展开更多
Using elastic crystalline viscoplastic finite element (FE) annlysis, the formability of BCC steel sheets was assessed. An orientation probability assignment method in the FE modeling procedure, which can be categorize...Using elastic crystalline viscoplastic finite element (FE) annlysis, the formability of BCC steel sheets was assessed. An orientation probability assignment method in the FE modeling procedure, which can be categorized as an inhomogenized material modeling, was newly proposed. In the study, the crystal orientations of three materials, mild steel, dual phase steel and the high strength steel, were obtained by Xray diffraction and orientation distribution function (ODF) analyses. The measured ODF results have revealed clearly different textures in the sheets, featured by orientation fibers, skeleton lines and selected orientations in Euler angle space, which are closely related to the plastic anisotropy. Then, the crystal orientations were assigned to FE integration points by using this ODF data, individually. The FE analyses of the standard limiting dome height (LDH) test show how the fiber textures affect the extent of strain localization in the forming processes. It was confirmed by comparison with experimental results that this FE code could predict the extreme strain localization and assess the sheet formability.展开更多
Based on governing equations of saturated porous media and Liapunov' s stability here, onset conditions matrix of porous media used by solid stress and Terzaghi's effective stress constitutive description under seep...Based on governing equations of saturated porous media and Liapunov' s stability here, onset conditions matrix of porous media used by solid stress and Terzaghi's effective stress constitutive description under seepage flow state, are presented, which have different forms with different representation of the solid phase, matrix or skeleton, constitutive model of porous media. The main difference relates with how to describe the interaction between solid phase and liquid phase in constitutive model. The derived onset condition of strain localization under Terzaghi' s effective stress description can be used to interpret different failure types, piping effect, landslides and mudflows, by means of the type and the magnitude ratio of relative movement between solid phase and liquid phase. Examples here illuminate the onset condition of how to work.展开更多
An investigation of computer simulation is presented to analyze the effectsof strain localization and damage evolution in large plastic deformation. The simulation is carriedout by using an elastic-plastic-damage coup...An investigation of computer simulation is presented to analyze the effectsof strain localization and damage evolution in large plastic deformation. The simulation is carriedout by using an elastic-plastic-damage coupling finite element program that is developed based onthe concept of mixed interpolation of displacement/pressure. This program has been incorporated intoa damage mechanics model as well as the corresponding damage criterion. To illustrate theperformance of the proposed approach, a typical strain localization problem has been simulated. Theresults show that the proposed approach is of good capability to capture strain localization andpredict the damage evolution.展开更多
The discrete element method is used to simulate specimens under three different loading conditions(conventional triaxial compression,plane strain,and direct shear)with different initial conditions to explore the und...The discrete element method is used to simulate specimens under three different loading conditions(conventional triaxial compression,plane strain,and direct shear)with different initial conditions to explore the underlying mechanics of the specimen deformation from a microscale perspective.Deformations of specimens with different initial void ratios at different confining stresses under different loading conditions are studied.Results show that the discrete element models successfully capture the specimen deformation and the strain localization.Particle behaviors including particle rotation and displacement and the mesoscale void ratio distributions are used to explain the strain localization and specimen deformation.It is found that the loading condition is one of the most important factors controlling the specimen deformation mode.Microscale behavior of the granular soil is the driving mechanics of the macroscale deformation of the granular assembly.展开更多
Fault rockburst is treated as a strain localization problem under dynamicloading condition considering strain gradient and strain rate. As a kind of dynamic fracturephenomena, rockburst has characteristics of strain l...Fault rockburst is treated as a strain localization problem under dynamicloading condition considering strain gradient and strain rate. As a kind of dynamic fracturephenomena, rockburst has characteristics of strain localization, which is considered as aone-dimensional shear problem subjected to normal compressive stress and tangential shear stress.The constitutive relation of rock material is bilinear (elastic and strain softening) and sensitiveto shear strain rate. The solutions proposed based on gradient-dependent plasticity show thatintense plastic strain is concentrated in fault band and the thickness of the band depends on thecharacteristic length of rock material. The post-peak stiffness of the fault band was determinedaccording to the constitutive parameters of rock material and shear strain rate. Fault bandundergoing strain softening and elastic rock mass outside the band constitute a system and theinstability criterion of the system was proposed based on energy theory. The criterion depends onthe constitutive relation of rock material, the structural size and the strain rate. The staticresult regardless of the strain rate is the special case of the present analytical solution. Highstrain rate can lead to instability of the system.展开更多
Deformation behavior of 1 Al containing Mg alloy has been investigated in the present study.After annealing,the Mg-1 Al alloy shows a typical basal texture.When compared to the pure Mg having a similar texture and gra...Deformation behavior of 1 Al containing Mg alloy has been investigated in the present study.After annealing,the Mg-1 Al alloy shows a typical basal texture.When compared to the pure Mg having a similar texture and grain size,the Mg-1 Al alloy shows much higher strength and larger elongation.Slip trace analyses of the tensile strained specimens show that non-basal slips such as pyramidal I and II slips can be easily activated at an early stage of deformation in the Mg-1 Al alloy and the grains in the Mg-1 Al alloy are seen to accommodate a larger degree of deformation than those in the pure Mg at a given strain.With increasing tensile strain,however,there is a strain localization along the initially formed slip lines of non-basal slips,forming surface steps without activating multiple slip lines.展开更多
A three-dimensional numerical torsion shear test is presented on hollow cylinder specimen which is performed on a spherical assemblage with fixed principal stress axes using the discrete element code PFC3D.Stack wall ...A three-dimensional numerical torsion shear test is presented on hollow cylinder specimen which is performed on a spherical assemblage with fixed principal stress axes using the discrete element code PFC3D.Stack wall technique boundary conditions are employed and optimized to reasonably capture the microstructure evolution.Parametric studies are conducted in terms of the ratio κ,normal and shear stiffness of particles,wall stiffness and friction coefficients.Afterwards,in comparison with physical test,numerical results for a fixed principal stress angle(α=45°) are presented.The results show that the numerical test could capture the macro-micro mechanical behavior of the spherical particle assembly.The evolution of the coordination number demonstrates that particles in shear banding undergo remarkable decrease.The effects of localization on specimens illustrate that global stress and strain recorded from a hollow cylinder apparatus could not represent the localized response.The shearing band initiation and evolution from porosity and shear rate are visualized by contour lines in different shear strains.展开更多
An approach for estimating ground surface rupture caused by strong earthquakes is presented in this paper, where the finite element (FE) method of continuous and discontinuous coalescent displacement fields is adopt...An approach for estimating ground surface rupture caused by strong earthquakes is presented in this paper, where the finite element (FE) method of continuous and discontinuous coalescent displacement fields is adopted. The onset condition of strain localization is introduced to detect the formation of the slippage line. In the analysis, the Drucker-Prager constitutive model is used for soils and the rate- and state-dependent friction law is used on the slippage line to simulate the evolution of the sliding. A simple application to evaluate the ground surface rupture induced by a reverse fault movement is provided, and the numerical simulation shows good agreement with failure characteristics observed in the field after strong earthquakes.展开更多
The volumetric strain was categorized into elastic and plastic parts. The farmer camposed of axial and lateral strains is uniform and determined by Hooke's law ; however, the latter consisting of axial and lateral st...The volumetric strain was categorized into elastic and plastic parts. The farmer camposed of axial and lateral strains is uniform and determined by Hooke's law ; however, the latter consisting of axial and lateral strains is a fuaction af thickness af shear band determined by grndieat-dependeat plasticity by cansidering the heterngeneity of quasi- brittle materials. The non- uniform lateral strain due to the fact that shear band was farmed in the middle of specimen was averaged within specimen to precisely assess the volumetric strain. Then, the analytical expression for volumetric strain was verified by comparison with two earlier experimental results for concrete and rack. Finally, a detailed parametric study was carried out to investigate effects of constitutive parameters ( shear band thickness, elastic and softening rnoduli ) and geometrical size of specimen( height and width of specimen ) on the volume dilatancy.展开更多
Geotechnical stability analyses based on classical continuum may lead to remarkable underestimations on geotechnical safety.To attain better estimations on geotechnical stability,the micro-polar continuum is employed ...Geotechnical stability analyses based on classical continuum may lead to remarkable underestimations on geotechnical safety.To attain better estimations on geotechnical stability,the micro-polar continuum is employed so that its internal characteristic length(lc)can be utilized to model the shear band width.Based on two soil slope examples,the role of internal characteristic length in modeling the shear band width of geomaterial is investigated by the second-order cone programming optimized micro-polar continuum finite element method.It is recognized that the underestimation on factor of safety(FOS)calculated from the classical continuum tends to be more pronounced with the increase of lc.When the micro-polar continuum is applied,the shear band dominated by lc is almost kept unaffected as long as the adopted meshes are fine enough,but it does not generally present a slip surface like in the cases from the classical continuum,indicating that the micro-polar continuum is capable of capturing the non-local geotechnical failure characteristic.Due to the coupling effects of lc and strain softening,softening behavior of geomaterial tends to be postponed.Additionally,the bearing capacity of a geotechnical system may be significantly underestimated,if the effects of lc are not modeled or considered in numerical analyses.展开更多
A mechanical model for strain softening pillar is proposed considering the characteristics of progressive shear failure and strain localization. The pillar undergoes elastic, strain softening and slabbing stages. In t...A mechanical model for strain softening pillar is proposed considering the characteristics of progressive shear failure and strain localization. The pillar undergoes elastic, strain softening and slabbing stages. In the elastic stage, vertical compressive stress and deformation at upper end of pillar are uniform, while in the strain softening stage there appears nonuniform due to occurrence of shear bands, leading to the decrease of load-carrying capacity. In addition, the size of failure zone increases in the strain softening stage and reaches its maximum value when slabbing begins. In the latter two stages, the size of elastic core always decreases. In the slabbing stage, the size of failure zone remains a constant and the pillar becomes thinner. Total deformation of the pillar is derived by linearly elastic Hookes law and gradient-dependent plasticity where thickness of localization band is determined according to the characteristic length. Post-peak stiffness is proposed according to analytical solution of averaged compressive stress-average deformation curve. Instability criterion of the pillar and roof strata system is proposed analytically (using) instability condition given by Salamon. It is found that the constitutive parameters of material of pillar, the geometrical size of pillar and the number of shear bands influence the stability of the system; stress gradient controls the starting time of slabbing, however it has no influence on the post-peak stiffness of the pillar.展开更多
It is always desirable to know the interior deformation pattern when a rock is subjected to mechanicalload. Few experimental techniques exist that can represent full-field three-dimensional (3D) straindistribution i...It is always desirable to know the interior deformation pattern when a rock is subjected to mechanicalload. Few experimental techniques exist that can represent full-field three-dimensional (3D) straindistribution inside a rock specimen. And yet it is crucial that this information is available for fully understandingthe failure mechanism of rocks or other geomaterials. In this study, by using the newlydeveloped digital volumetric speckle photography (DVSP) technique in conjunction with X-ray computedtomography (CT) and taking advantage of natural 3D speckles formed inside the rock due to materialimpurities and voids, we can probe the interior of a rock to map its deformation pattern under load andshed light on its failure mechanism. We apply this technique to the analysis of a red sandstone specimenunder increasing uniaxial compressive load applied incrementally. The full-field 3D displacement fieldsare obtained in the specimen as a function of the load, from which both the volumetric and the deviatoricstrain fields are calculated. Strain localization zones which lead to the eventual failure of the rock areidentified. The results indicate that both shear and tension are contributing factors to the failuremechanism. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
The effects of microstructure inhomogeneity on the mechanical properties of different zones in TA15 electron beam welded joints were investigated using a micromechanics-based finite element method.Considering the inde...The effects of microstructure inhomogeneity on the mechanical properties of different zones in TA15 electron beam welded joints were investigated using a micromechanics-based finite element method.Considering the indentation size effect,the mechanical properties for constituent phases of the base metal(BM) and heat affected zone(HAZ) were determined by the instrumented nano-indentation test.The macroscopic mechanical properties of BM and HAZ obtained from the tensile test agree well with the numerical results.The incompatible deformation between the constituent phases tends to localize along the softer primary phase a where failure usually initiates in form of localized plastic strain.Compared with the BM,the mechanical properties of constituent phases in the HAZ differ substantially,leading to more serious strain localization behavior.展开更多
This paper investigates the deformation and fracture propagation of sandstone specimen under uniaxial compression using the distributed fiber optic strain sensing(DFOSS)technology.It shows that the DFOSS-based circumf...This paper investigates the deformation and fracture propagation of sandstone specimen under uniaxial compression using the distributed fiber optic strain sensing(DFOSS)technology.It shows that the DFOSS-based circumferential strains are in agreement with the data monitored with the traditional strain gage.The DFOSS successfully scans the full-field view of axial and circumferential strains on the specimen surface.The spatiotemporal strain measurement based on DFOSS manifests crack closure and elastoplastic deformation,detects initialization of microcrack nucleation,and identifies strain localization within the specimen.The DFOSS well observes the effects of rock heterogeneity on rock deformation.The advantage of DFOSS-based strain acquisition includes the high spatiotemporal resolution of signals and the ability of full-surface strain scanning.The introduction to the DFOSS technology yields a better understanding of the rock damage process under uniaxial compression.展开更多
基金National Natural Science Foundation of China(No.11874067)。
文摘We reported a low-cost and easy-to-make method to effectively generate quantum dot(QD)states in 2D hBN films for quantum emissions at room temperature by utilizing silica nanospheres,in comparison with the sophisticated nanofabrication method reported in previous studies.The QDs created in 2D hBN films using silica nanospheres exhibit pronounced photon emissions with a good photo-stability in air,a narrow distribution of the emission peaks within the range of 580-620 nm,and a directional emission pattern,behaving as a single electric dipole.Our work develops the method of controllable fabrication of quantum emitters in 2D materials by using nano materials and structures.
基金Project supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LZ22A040003)the National Natural Science Foundation of China (Grant No. 52027809)。
文摘Electronic properties of two-dimensional(2D) materials can be strongly modulated by localized strain. The typical spatial resolution of conventional Kelvin probe force microscopy(KPFM) is usually limited in a few hundreds of nanometers, and it is difficult to characterize localized electronic properties of 2D materials at nanoscales. Herein, tip-enhanced Raman spectroscopy(TERS) is proposed to combine with KPFM to break this restriction. TERS scan is conducted on ReS2bubbles deposited on a rough Au thin film to obtain strain distribution by using the Raman peak shift. The localized contact potential difference(CPD) is inversely calculated with a higher spatial resolution by using strain measured by TERS and CPD-strain working curve obtained using conventional KPFM and atomic force microscopy. This method enhances the spatial resolution of CPD measurements and can be potentially used to characterize localized electronic properties of 2D materials.
基金support from National Natural Science Foundation of China(Grant No.52178309)the National Key R&D Program of China(Grant No.2017YFC0804602)the Fundamental Research Funds for the Central Universities(Grant No.2019JBM092)。
文摘To address the problems of strain localization, the exact Mohr-Coulomb (MC) model is used based on second-order cone programming (mpcFEM-SOCP) in the framework of micropolar continuum finite element method. Using the uniaxial compression test, we focused on the earth pressure problem of rigid wall segment involving non-associated plasticity. The numerical results reveal that when mpcFEM-SOCP is applied, the problems of mesh dependency can be effectively addressed. For geotechnical strain localization analysis involving non-associated MC plasticity, mpcFEM-SOCP in conjunction with the pseudo-time discrete scheme can improve the numerical stability and avoid the unreasonable softening issue in the pressure-displacement curves, which may be encountered in the conventional FEM. It also shows that the pressure-displacement responses calculated by mpcFEM-SOCP with the pseudo-time discrete scheme are higher than those calculated by mpcFEM-SOCP with the Davis scheme. The inclination angle of shear band predicted by mpcFEM-SOCP with the pseudo-time discrete scheme agrees well with the theoretical solution of non-associated MC plasticity.
基金Supported by the National Key Research and Development Program of China (Grant No.2016YFA0302001)the National Natural Science Foundation of China (Grant Nos.11774224,12074244,11521404,and 61701394)+1 种基金support from the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learningadditional support from a Shanghai talent program。
文摘Detection of local strain at the nanometer scale with high sensitivity remains challenging.Here we report near-field infrared nano-imaging of local strains in bilayer graphene by probing strain-induced shifts of phonon frequency.As a non-polar crystal,intrinsic bilayer graphene possesses little infrared response at its transverse optical phonon frequency.The reported optical detection of local strain is enabled by applying a vertical electrical field that breaks the symmetry of the two graphene layers and introduces finite electrical dipole moment to graphene phonon.The activated phonon further interacts with continuum electronic transitions,and generates a strong Fano resonance.The resulted Fano resonance features a very sharp near-field infrared scattering peak,which leads to an extraordinary sensitivity of-0.002%for the strain detection.Our results demonstrate the first nano-scale near-field Fano resonance,provide a new way to probe local strains with high sensitivity in non-polar crystals,and open exciting possibilities for studying strain-induced rich phenomena.
基金financially supported by the National Natural Science Foundation of China(Nos.52061135207,51871016,51921001,11790293,and 51971017)111 Project(No.B07003)the Projects of SKL-AMM-USTB(Nos.2019Z-01 and 2018Z-19)。
文摘The coupling effects of the metastable austenitic phase and the amorphous matrix in a transformation-induced plasticity(TRIP)-reinforced bulk metallic glass(BMG)composite under compressive loading were investigated by employing the digital image correlation(DIC)technique.The evolution of local strain field in the crystalline phase and the amorphous matrix was directly monitored,and the contribution from the phase transformation of the metastable austenitic phase was revealed.Local shear strain was found to be effectively consumed by the displacive phase transformation of the metastable austenitic phase,which relaxed the local strain/stress concentration at the interface and thus greatly enhanced the plasticity of the TRIP-reinforced BMG composites.Our current study sheds light on in-depth understanding of the underlying deformation mechanism and the interplay between the amorphous matrix and the metastable crystalline phase during deformation,which is helpful for design of advanced BMG composites with further improved properties.
文摘The current study performed a finite element analysis of the strain localization behavior of a voided ductile material using a non-local plasticity formulation in which the yield strength depends on both an equivalent plastic strain measurement (hardening parameter) and Laplacian equivalent. The introduction of gradient terms to the yield function was found to play an important role in simulating the strain localization behavior of the voided ductile material. The effect of the mesh size and characteristic length on the strain localization were also investigated. An FEM simulation based on the proposed non-local plasticity revealed that the load-strain curves of the voided ductile material subjected to plane strain tension converged to one curve, regardless of the mesh size. In addition, the results using non-local plasticity also exhibited that the dependence of the deformation behavior of the material on the mesh size was much less sensitive than that with classical local plasticity and could be successfully eliminated through the introduction of a large value for the characteristic length.
基金the National Natural Science Foundation of China for financial support(Grant No.59875025) to the research cooperation with OIT,Japan
文摘Using elastic crystalline viscoplastic finite element (FE) annlysis, the formability of BCC steel sheets was assessed. An orientation probability assignment method in the FE modeling procedure, which can be categorized as an inhomogenized material modeling, was newly proposed. In the study, the crystal orientations of three materials, mild steel, dual phase steel and the high strength steel, were obtained by Xray diffraction and orientation distribution function (ODF) analyses. The measured ODF results have revealed clearly different textures in the sheets, featured by orientation fibers, skeleton lines and selected orientations in Euler angle space, which are closely related to the plastic anisotropy. Then, the crystal orientations were assigned to FE integration points by using this ODF data, individually. The FE analyses of the standard limiting dome height (LDH) test show how the fiber textures affect the extent of strain localization in the forming processes. It was confirmed by comparison with experimental results that this FE code could predict the extreme strain localization and assess the sheet formability.
文摘Based on governing equations of saturated porous media and Liapunov' s stability here, onset conditions matrix of porous media used by solid stress and Terzaghi's effective stress constitutive description under seepage flow state, are presented, which have different forms with different representation of the solid phase, matrix or skeleton, constitutive model of porous media. The main difference relates with how to describe the interaction between solid phase and liquid phase in constitutive model. The derived onset condition of strain localization under Terzaghi' s effective stress description can be used to interpret different failure types, piping effect, landslides and mudflows, by means of the type and the magnitude ratio of relative movement between solid phase and liquid phase. Examples here illuminate the onset condition of how to work.
基金The work was financially supported by a research grant from University of Science and Technology Beijing (No.20020611590).
文摘An investigation of computer simulation is presented to analyze the effectsof strain localization and damage evolution in large plastic deformation. The simulation is carriedout by using an elastic-plastic-damage coupling finite element program that is developed based onthe concept of mixed interpolation of displacement/pressure. This program has been incorporated intoa damage mechanics model as well as the corresponding damage criterion. To illustrate theperformance of the proposed approach, a typical strain localization problem has been simulated. Theresults show that the proposed approach is of good capability to capture strain localization andpredict the damage evolution.
基金The National Natural Science Foundation of China(No.51079030)
文摘The discrete element method is used to simulate specimens under three different loading conditions(conventional triaxial compression,plane strain,and direct shear)with different initial conditions to explore the underlying mechanics of the specimen deformation from a microscale perspective.Deformations of specimens with different initial void ratios at different confining stresses under different loading conditions are studied.Results show that the discrete element models successfully capture the specimen deformation and the strain localization.Particle behaviors including particle rotation and displacement and the mesoscale void ratio distributions are used to explain the strain localization and specimen deformation.It is found that the loading condition is one of the most important factors controlling the specimen deformation mode.Microscale behavior of the granular soil is the driving mechanics of the macroscale deformation of the granular assembly.
基金This work was financially supported by the National Natural Science Foundation of China (No.50309004) Liaoning Technical University (No. 02-38).
文摘Fault rockburst is treated as a strain localization problem under dynamicloading condition considering strain gradient and strain rate. As a kind of dynamic fracturephenomena, rockburst has characteristics of strain localization, which is considered as aone-dimensional shear problem subjected to normal compressive stress and tangential shear stress.The constitutive relation of rock material is bilinear (elastic and strain softening) and sensitiveto shear strain rate. The solutions proposed based on gradient-dependent plasticity show thatintense plastic strain is concentrated in fault band and the thickness of the band depends on thecharacteristic length of rock material. The post-peak stiffness of the fault band was determinedaccording to the constitutive parameters of rock material and shear strain rate. Fault bandundergoing strain softening and elastic rock mass outside the band constitute a system and theinstability criterion of the system was proposed based on energy theory. The criterion depends onthe constitutive relation of rock material, the structural size and the strain rate. The staticresult regardless of the strain rate is the special case of the present analytical solution. Highstrain rate can lead to instability of the system.
文摘Deformation behavior of 1 Al containing Mg alloy has been investigated in the present study.After annealing,the Mg-1 Al alloy shows a typical basal texture.When compared to the pure Mg having a similar texture and grain size,the Mg-1 Al alloy shows much higher strength and larger elongation.Slip trace analyses of the tensile strained specimens show that non-basal slips such as pyramidal I and II slips can be easily activated at an early stage of deformation in the Mg-1 Al alloy and the grains in the Mg-1 Al alloy are seen to accommodate a larger degree of deformation than those in the pure Mg at a given strain.With increasing tensile strain,however,there is a strain localization along the initially formed slip lines of non-basal slips,forming surface steps without activating multiple slip lines.
基金Project(41202186) supported by the National Natural Science Foundation of ChinaProject(LQ12E08007) supported by the Zhejiang Natural Science Foundation,ChinaProject(#11-KF-08) supported by the Partially Guangxi Key Laboratory of Geomechanics and Geotechnical Engineering,Guilin University of Technology,China
文摘A three-dimensional numerical torsion shear test is presented on hollow cylinder specimen which is performed on a spherical assemblage with fixed principal stress axes using the discrete element code PFC3D.Stack wall technique boundary conditions are employed and optimized to reasonably capture the microstructure evolution.Parametric studies are conducted in terms of the ratio κ,normal and shear stiffness of particles,wall stiffness and friction coefficients.Afterwards,in comparison with physical test,numerical results for a fixed principal stress angle(α=45°) are presented.The results show that the numerical test could capture the macro-micro mechanical behavior of the spherical particle assembly.The evolution of the coordination number demonstrates that particles in shear banding undergo remarkable decrease.The effects of localization on specimens illustrate that global stress and strain recorded from a hollow cylinder apparatus could not represent the localized response.The shearing band initiation and evolution from porosity and shear rate are visualized by contour lines in different shear strains.
基金National Science Foundation Council State KeyLaboratory of Frozen Soil Engineering (SKLFSE200504)State Commonweal Research Project (2002DIB30076)
文摘An approach for estimating ground surface rupture caused by strong earthquakes is presented in this paper, where the finite element (FE) method of continuous and discontinuous coalescent displacement fields is adopted. The onset condition of strain localization is introduced to detect the formation of the slippage line. In the analysis, the Drucker-Prager constitutive model is used for soils and the rate- and state-dependent friction law is used on the slippage line to simulate the evolution of the sliding. A simple application to evaluate the ground surface rupture induced by a reverse fault movement is provided, and the numerical simulation shows good agreement with failure characteristics observed in the field after strong earthquakes.
基金Funded by the National Natural Science Foundation of China(No.50309004)
文摘The volumetric strain was categorized into elastic and plastic parts. The farmer camposed of axial and lateral strains is uniform and determined by Hooke's law ; however, the latter consisting of axial and lateral strains is a fuaction af thickness af shear band determined by grndieat-dependeat plasticity by cansidering the heterngeneity of quasi- brittle materials. The non- uniform lateral strain due to the fact that shear band was farmed in the middle of specimen was averaged within specimen to precisely assess the volumetric strain. Then, the analytical expression for volumetric strain was verified by comparison with two earlier experimental results for concrete and rack. Finally, a detailed parametric study was carried out to investigate effects of constitutive parameters ( shear band thickness, elastic and softening rnoduli ) and geometrical size of specimen( height and width of specimen ) on the volume dilatancy.
基金Projects(2017YFC0804602,2017YFC0404802)supported by the National Key R&D Program of ChinaProject(2019JBM092)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Geotechnical stability analyses based on classical continuum may lead to remarkable underestimations on geotechnical safety.To attain better estimations on geotechnical stability,the micro-polar continuum is employed so that its internal characteristic length(lc)can be utilized to model the shear band width.Based on two soil slope examples,the role of internal characteristic length in modeling the shear band width of geomaterial is investigated by the second-order cone programming optimized micro-polar continuum finite element method.It is recognized that the underestimation on factor of safety(FOS)calculated from the classical continuum tends to be more pronounced with the increase of lc.When the micro-polar continuum is applied,the shear band dominated by lc is almost kept unaffected as long as the adopted meshes are fine enough,but it does not generally present a slip surface like in the cases from the classical continuum,indicating that the micro-polar continuum is capable of capturing the non-local geotechnical failure characteristic.Due to the coupling effects of lc and strain softening,softening behavior of geomaterial tends to be postponed.Additionally,the bearing capacity of a geotechnical system may be significantly underestimated,if the effects of lc are not modeled or considered in numerical analyses.
文摘A mechanical model for strain softening pillar is proposed considering the characteristics of progressive shear failure and strain localization. The pillar undergoes elastic, strain softening and slabbing stages. In the elastic stage, vertical compressive stress and deformation at upper end of pillar are uniform, while in the strain softening stage there appears nonuniform due to occurrence of shear bands, leading to the decrease of load-carrying capacity. In addition, the size of failure zone increases in the strain softening stage and reaches its maximum value when slabbing begins. In the latter two stages, the size of elastic core always decreases. In the slabbing stage, the size of failure zone remains a constant and the pillar becomes thinner. Total deformation of the pillar is derived by linearly elastic Hookes law and gradient-dependent plasticity where thickness of localization band is determined according to the characteristic length. Post-peak stiffness is proposed according to analytical solution of averaged compressive stress-average deformation curve. Instability criterion of the pillar and roof strata system is proposed analytically (using) instability condition given by Salamon. It is found that the constitutive parameters of material of pillar, the geometrical size of pillar and the number of shear bands influence the stability of the system; stress gradient controls the starting time of slabbing, however it has no influence on the post-peak stiffness of the pillar.
基金financially supported by National Basic Research Program of China (973 Program) (No. 2010CB732002)National Natural Science Foundation of China (Nos. 51374211, 51374215)+1 种基金National Key Foundation for Exploring Scientific Instrument of China (No. 2013YQ240803)Fundamental Research Funds for the Central Universities (No. 2009QM02)
文摘It is always desirable to know the interior deformation pattern when a rock is subjected to mechanicalload. Few experimental techniques exist that can represent full-field three-dimensional (3D) straindistribution inside a rock specimen. And yet it is crucial that this information is available for fully understandingthe failure mechanism of rocks or other geomaterials. In this study, by using the newlydeveloped digital volumetric speckle photography (DVSP) technique in conjunction with X-ray computedtomography (CT) and taking advantage of natural 3D speckles formed inside the rock due to materialimpurities and voids, we can probe the interior of a rock to map its deformation pattern under load andshed light on its failure mechanism. We apply this technique to the analysis of a red sandstone specimenunder increasing uniaxial compressive load applied incrementally. The full-field 3D displacement fieldsare obtained in the specimen as a function of the load, from which both the volumetric and the deviatoricstrain fields are calculated. Strain localization zones which lead to the eventual failure of the rock areidentified. The results indicate that both shear and tension are contributing factors to the failuremechanism. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
基金Project(51875402)supported by the National Natural Science Foundation of China
文摘The effects of microstructure inhomogeneity on the mechanical properties of different zones in TA15 electron beam welded joints were investigated using a micromechanics-based finite element method.Considering the indentation size effect,the mechanical properties for constituent phases of the base metal(BM) and heat affected zone(HAZ) were determined by the instrumented nano-indentation test.The macroscopic mechanical properties of BM and HAZ obtained from the tensile test agree well with the numerical results.The incompatible deformation between the constituent phases tends to localize along the softer primary phase a where failure usually initiates in form of localized plastic strain.Compared with the BM,the mechanical properties of constituent phases in the HAZ differ substantially,leading to more serious strain localization behavior.
基金support from the Institute of Crustal Dynamics,China Earthquake Administration(Grant No.ZDJ2016-20 and ZDJ2019-15)。
文摘This paper investigates the deformation and fracture propagation of sandstone specimen under uniaxial compression using the distributed fiber optic strain sensing(DFOSS)technology.It shows that the DFOSS-based circumferential strains are in agreement with the data monitored with the traditional strain gage.The DFOSS successfully scans the full-field view of axial and circumferential strains on the specimen surface.The spatiotemporal strain measurement based on DFOSS manifests crack closure and elastoplastic deformation,detects initialization of microcrack nucleation,and identifies strain localization within the specimen.The DFOSS well observes the effects of rock heterogeneity on rock deformation.The advantage of DFOSS-based strain acquisition includes the high spatiotemporal resolution of signals and the ability of full-surface strain scanning.The introduction to the DFOSS technology yields a better understanding of the rock damage process under uniaxial compression.