The fatigue behavior of welded structures is currently determined by means of recommendations defined in terms of S-N curve corresponding to the detail classes of welded joints without taking account of the actual geo...The fatigue behavior of welded structures is currently determined by means of recommendations defined in terms of S-N curve corresponding to the detail classes of welded joints without taking account of the actual geometry of the weld. A new fatigue strength assessment method based on Dang Van multiaxial fatigue limit criterion was introduced, which is named the local approach and presented by Institut de Soudure recently. The local approach has advantages in taking welding residual stresses and the geometry of the weld toe and weld root into consideration. The application of the local approach to the fatigue strength assessment of low carbon steel Q235B welded joints was studied. The fatigue tests and finite element analysis results show that the local approach parameters recommended by Institut de Soudure were incorrectly for low carbon steel Q235B welded joints. With aluminum alloy welded joints being used widely, the parameters of the local approach used for aluminum alloy welded joints were obtained and verified on bases of the fatigue tests and finite element analysis.展开更多
The relationship between Charpy absorbed energy and the fracture toughness by means of the (crack tip opening displacement (CTOD)) method was analyzed based on the Weibull stress criterion. The Charpy absorbed energy ...The relationship between Charpy absorbed energy and the fracture toughness by means of the (crack tip opening displacement (CTOD)) method was analyzed based on the Weibull stress criterion. The Charpy absorbed energy and the fracture toughness were measured for the SN490B steel under the ductile-brittle transition temperature region. For the instrumented Charpy impact test, the curves between the loading point displacement and the load against time were recorded. The critical Weibull stress was taken as a fracture controlled parameter, and it could not be affected by the specimen configuration and the loading pattern based on the local approach. The parameters controlled brittle fracture are obtained from the Charpy absorbed energy results, then the fracture toughness for the compact tension (CT) specimen is predicted. It is found that the results predicted are in good agreement with the experimental. The fracture toughness could be evaluated by the Charpy absorbed energy, because the local approach gives a good description for the brittle fracture even though the Charpy impact specimen or the CT specimen is used for the given material.展开更多
文摘The fatigue behavior of welded structures is currently determined by means of recommendations defined in terms of S-N curve corresponding to the detail classes of welded joints without taking account of the actual geometry of the weld. A new fatigue strength assessment method based on Dang Van multiaxial fatigue limit criterion was introduced, which is named the local approach and presented by Institut de Soudure recently. The local approach has advantages in taking welding residual stresses and the geometry of the weld toe and weld root into consideration. The application of the local approach to the fatigue strength assessment of low carbon steel Q235B welded joints was studied. The fatigue tests and finite element analysis results show that the local approach parameters recommended by Institut de Soudure were incorrectly for low carbon steel Q235B welded joints. With aluminum alloy welded joints being used widely, the parameters of the local approach used for aluminum alloy welded joints were obtained and verified on bases of the fatigue tests and finite element analysis.
基金The work is supported by the National Natural Science Foundation of China under grant No.50275107by Fok Ying Tung Education Foundation under grant No.81405.
文摘The relationship between Charpy absorbed energy and the fracture toughness by means of the (crack tip opening displacement (CTOD)) method was analyzed based on the Weibull stress criterion. The Charpy absorbed energy and the fracture toughness were measured for the SN490B steel under the ductile-brittle transition temperature region. For the instrumented Charpy impact test, the curves between the loading point displacement and the load against time were recorded. The critical Weibull stress was taken as a fracture controlled parameter, and it could not be affected by the specimen configuration and the loading pattern based on the local approach. The parameters controlled brittle fracture are obtained from the Charpy absorbed energy results, then the fracture toughness for the compact tension (CT) specimen is predicted. It is found that the results predicted are in good agreement with the experimental. The fracture toughness could be evaluated by the Charpy absorbed energy, because the local approach gives a good description for the brittle fracture even though the Charpy impact specimen or the CT specimen is used for the given material.