There are many problems in Social Internet of Things(IoTs),such as complex topology information,different degree of association between nodes and overlapping communities.The idea of set pair information grain computin...There are many problems in Social Internet of Things(IoTs),such as complex topology information,different degree of association between nodes and overlapping communities.The idea of set pair information grain computing and clustering is introduced to solve the above problems so as to accurately describe the similarity between nodes and fully explore the multi-community structure.A Set Pair Three-Way Overlapping Community Discovery Algorithm for Weighted Social Internet of Things(WSIoT-SPTOCD)is proposed.In the local network structure,which fully considers the topological information between nodes,the set pair connection degree is used to analyze the identity,difference and reverse of neighbor nodes.The similarity degree of different neighbor nodes is defined from network edge weight and node degree,and the similarity measurement method of set pair between nodes based on the local information structure is proposed.According to the number of nodes'neighbors and the connection degree of adjacent edges,the clustering intensity of nodes is defined,and an improved algorithm for initial value selection of k-means is proposed.The nodes are allocated according to the set pair similarity between nodes and different communities.Three-way community structures composed of a positive domain,boundary domain and negative domain are generated iteratively.Next,the overlapping node set is generated according to the calculation results of community node membership.Finally,experiments are carried out on artificial networks and real networks.The results show that WSIoT-SPTOCD performs well in terms of standardized mutual information,overlapping community modularity and F1.展开更多
文摘There are many problems in Social Internet of Things(IoTs),such as complex topology information,different degree of association between nodes and overlapping communities.The idea of set pair information grain computing and clustering is introduced to solve the above problems so as to accurately describe the similarity between nodes and fully explore the multi-community structure.A Set Pair Three-Way Overlapping Community Discovery Algorithm for Weighted Social Internet of Things(WSIoT-SPTOCD)is proposed.In the local network structure,which fully considers the topological information between nodes,the set pair connection degree is used to analyze the identity,difference and reverse of neighbor nodes.The similarity degree of different neighbor nodes is defined from network edge weight and node degree,and the similarity measurement method of set pair between nodes based on the local information structure is proposed.According to the number of nodes'neighbors and the connection degree of adjacent edges,the clustering intensity of nodes is defined,and an improved algorithm for initial value selection of k-means is proposed.The nodes are allocated according to the set pair similarity between nodes and different communities.Three-way community structures composed of a positive domain,boundary domain and negative domain are generated iteratively.Next,the overlapping node set is generated according to the calculation results of community node membership.Finally,experiments are carried out on artificial networks and real networks.The results show that WSIoT-SPTOCD performs well in terms of standardized mutual information,overlapping community modularity and F1.