Consider a branching random walk, where the underlying branching mechanism is governed by a Galton-Watson process and the moving law of particles by a discrete random variable on the integer lattice Z. Denote by Zn(z...Consider a branching random walk, where the underlying branching mechanism is governed by a Galton-Watson process and the moving law of particles by a discrete random variable on the integer lattice Z. Denote by Zn(z) the number of particles in the n-th generation in the model for each z ∈ Z. We derive the exact convergence rate in the local limit theorem for Zn(z) assuming a condition like "EN(logN)1+λ 〈 ∞" for the offspring distribution and a finite moment condition on the motion law. This complements the known results for the strongly non-lattice branching random walk on the real line and for the simple symmetric branching random walk on the integer lattice.展开更多
For an elliptic problem with variable coefficients in three dimensions,this article discusses local pointwise convergence of the three-dimensional(3D)finite element.First,the Green's function and the derivative Gr...For an elliptic problem with variable coefficients in three dimensions,this article discusses local pointwise convergence of the three-dimensional(3D)finite element.First,the Green's function and the derivative Green's function are introduced.Secondly,some relationship of norms such as L^(2)-norms,W^(1,∞)-norms,and negative-norms in locally smooth subsets of the domainΩis derived.Finally,local pointwise convergence properties of the finite element approximation are obtained.展开更多
In this paper we consider lim _(R-) B_R^(f,x_0), in one case that f_x_0 (t) is a ABMV function on [0, ∞], and in another case that f∈L_(m-1)~1(R~) and x^k/~kf∈BV(R) when |k| = m-1 and f(x) = 0 when |x -x_0|<δ f...In this paper we consider lim _(R-) B_R^(f,x_0), in one case that f_x_0 (t) is a ABMV function on [0, ∞], and in another case that f∈L_(m-1)~1(R~) and x^k/~kf∈BV(R) when |k| = m-1 and f(x) = 0 when |x -x_0|<δ for some δ>0. Our theormes improve the results of Pan Wenjie ([1]).展开更多
We introduce and study in the present paper the general version of Gauss-type proximal point algorithm (in short GG-PPA) for solving the inclusion , where T is a set-valued mapping which is not necessarily monotone ac...We introduce and study in the present paper the general version of Gauss-type proximal point algorithm (in short GG-PPA) for solving the inclusion , where T is a set-valued mapping which is not necessarily monotone acting from a Banach space X to a subset of a Banach space Y with locally closed graph. The convergence of the GG-PPA is present here by choosing a sequence of functions with , which is Lipschitz continuous in a neighbourhood O of the origin and when T is metrically regular. More precisely, semi-local and local convergence of GG-PPA are analyzed. Moreover, we present a numerical example to validate the convergence result of GG-PPA.展开更多
A local convergence theorem and five semi-local convergence theorems of the secant method are listed in this paper. For every convergence theorem, a convergence ball is respectively introduced, where the hypothesis co...A local convergence theorem and five semi-local convergence theorems of the secant method are listed in this paper. For every convergence theorem, a convergence ball is respectively introduced, where the hypothesis conditions of the corresponding theorem can be satisfied. Since all of these convergence balls have the same center x^*, they can be viewed as a homocentric ball. Convergence theorems are sorted by the different sizes of various radii of this homocentric ball, and the sorted sequence represents the degree of weakness on the conditions of convergence theorems.展开更多
Mathematical programs with complementarity constraints(MPCC) is an important subclass of MPEC.It is a natural way to solve MPCC by constructing a suitable approximation of the primal problem.In this paper,we propose a...Mathematical programs with complementarity constraints(MPCC) is an important subclass of MPEC.It is a natural way to solve MPCC by constructing a suitable approximation of the primal problem.In this paper,we propose a new smoothing method for MPCC by using the aggregation technique.A new SQP algorithm for solving the MPCC problem is presented.At each iteration,the master direction is computed by solving a quadratic program,and the revised direction for avoiding the Maratos effect is generated by an explicit formula.As the non-degeneracy condition holds and the smoothing parameter tends to zero,the proposed SQP algorithm converges globally to an S-stationary point of the MPEC problem,its convergence rate is superlinear.Some preliminary numerical results are reported.展开更多
A modified Gauss-type Proximal Point Algorithm (modified GG-PPA) is presented in this paper for solving the generalized equations like 0 ∈T(x), where T is a set-valued mapping acts between two different Bana...A modified Gauss-type Proximal Point Algorithm (modified GG-PPA) is presented in this paper for solving the generalized equations like 0 ∈T(x), where T is a set-valued mapping acts between two different Banach spaces X and Y. By considering some necessary assumptions, we show the existence of any sequence generated by the modified GG-PPA and prove the semi-local and local convergence results by using metrically regular mapping. In addition, we give a numerical example to justify the result of semi-local convergence.展开更多
In this paper,we construct a new sixth order iterative method for solving nonlinear equations.The local convergence and order of convergence of the new iterative method is demonstrated.In order to check the validity o...In this paper,we construct a new sixth order iterative method for solving nonlinear equations.The local convergence and order of convergence of the new iterative method is demonstrated.In order to check the validity of the new iterative method,we employ several chemical engineering applications and academic test problems.Numerical results show the good numerical performance of the new iterative method.Moreover,the dynamical study of the new method also supports the theoretical results.展开更多
Consider a branching random walk with a random environment in time in the d-dimensional integer lattice.The branching mechanism is governed by a supercritical branching process,and the particles perform a lazy random ...Consider a branching random walk with a random environment in time in the d-dimensional integer lattice.The branching mechanism is governed by a supercritical branching process,and the particles perform a lazy random walk with an independent,non-identical increment distribution.For A■Z^(d),let Z_(n)(A)be the number of offsprings of generation n located in A.The exact convergence rate of the local limit theorem for the counting measure Z_(n)(·)is obtained.This partially extends the previous results for a simple branching random walk derived by Gao(2017,Stoch.Process Appl.).展开更多
A noninterior continuation method is proposed for semidefinite complementarity problem (SDCP). This method improves the noninterior continuation methods recently developed for SDCP by Chen and Tseng. The main proper...A noninterior continuation method is proposed for semidefinite complementarity problem (SDCP). This method improves the noninterior continuation methods recently developed for SDCP by Chen and Tseng. The main properties of our method are: (i) it is well d.efined for the monotones SDCP; (ii) it has to solve just one linear system of equations at each step; (iii) it is shown to be both globally linearly convergent and locally quadratically convergent under suitable assumptions.展开更多
This paper gives a method of descent for the locally Lipschitzian function. It is assumed that the generalized subgradient set of the differentiable point is a singleton point. We introduce an implementable algorithm ...This paper gives a method of descent for the locally Lipschitzian function. It is assumed that the generalized subgradient set of the differentiable point is a singleton point. We introduce an implementable algorithm which is globally convergent. Numerical examples show the implementation and efficiency of the algorithm .展开更多
A local energy conservation law is proposed for the Klein--Gordon-Schrrdinger equations, which is held in any local time-space region. The local property is independent of the boundary condition and more essential tha...A local energy conservation law is proposed for the Klein--Gordon-Schrrdinger equations, which is held in any local time-space region. The local property is independent of the boundary condition and more essential than the global energy conservation law. To develop a numerical method preserving the intrinsic properties as much as possible, we propose a local energy-preserving (LEP) scheme for the equations. The merit of the proposed scheme is that the local energy conservation law can hold exactly in any time-space region. With the periodic boundary conditions, the scheme also possesses the discrete change and global energy conservation laws. A nonlinear analysis shows that the LEP scheme converges to the exact solutions with order O(τ2 + h2). The theoretical properties are verified by numerical experiments.展开更多
This paper considers local median estimation in fixed design regression problems. The proposed method is employed to estimate the median function and the variance function of a heteroscedastic regression model. Strong...This paper considers local median estimation in fixed design regression problems. The proposed method is employed to estimate the median function and the variance function of a heteroscedastic regression model. Strong convergence rates of the proposed estimators are obtained. Simulation results are given to show the performance of the proposed methods.展开更多
In this paper,a local discontinuous Galerkin(LDG)scheme for the time-fractional diffusion equation is proposed and analyzed.The Caputo time-fractional derivative(of orderα,with 0<α<1)is approximated by a finit...In this paper,a local discontinuous Galerkin(LDG)scheme for the time-fractional diffusion equation is proposed and analyzed.The Caputo time-fractional derivative(of orderα,with 0<α<1)is approximated by a finite difference method with an accuracy of order3-α,and the space discretization is based on the LDG method.For the finite difference method,we summarize and supplement some previous work by others,and apply it to the analysis of the convergence and stability of the proposed scheme.The optimal error estimate is obtained in the L2norm,indicating that the scheme has temporal(3-α)th-order accuracy and spatial(k+1)th-order accuracy,where k denotes the highest degree of a piecewise polynomial in discontinuous finite element space.The numerical results are also provided to verify the accuracy and efficiency of the considered scheme.展开更多
We give a neccesary and sufficient condition on a function such that the composition operator (Nemytskij Operator) H defined by acts in the space and satisfies a local Lipschitz condition. And, we prove that ever...We give a neccesary and sufficient condition on a function such that the composition operator (Nemytskij Operator) H defined by acts in the space and satisfies a local Lipschitz condition. And, we prove that every locally defined operator mapping the space of continuous and bounded Wiener p(·)-variation with variable exponent functions into itself is a Nemytskij com-position operator.展开更多
For two-dimensional(2D)time fractional diffusion equations,we construct a numerical method based on a local discontinuous Galerkin(LDG)method in space and a finite differ-ence scheme in time.We investigate the numeric...For two-dimensional(2D)time fractional diffusion equations,we construct a numerical method based on a local discontinuous Galerkin(LDG)method in space and a finite differ-ence scheme in time.We investigate the numerical stability and convergence of the method for both rectangular and triangular meshes and show that the method is unconditionally stable.Numerical results indicate the effectiveness and accuracy of the method and con-firm the analysis.展开更多
为解决现有粒子群改进策略无法帮助已陷入局部最优和过早收敛的粒子恢复寻优性能的问题,提出一种陷阱标记联合懒蚂蚁的自适应粒子群优化(adaptive particle swarm optimization based on trap label and lazy ant, TLLA-APSO)算法。陷...为解决现有粒子群改进策略无法帮助已陷入局部最优和过早收敛的粒子恢复寻优性能的问题,提出一种陷阱标记联合懒蚂蚁的自适应粒子群优化(adaptive particle swarm optimization based on trap label and lazy ant, TLLA-APSO)算法。陷阱标记策略为粒子群提供动态速度增量,使其摆脱最优解的束缚。利用懒蚂蚁寻优策略多样化粒子速度,提升种群多样性。通过惯性认知策略在速度更新中引入历史位置,增加粒子的路径多样性和提升粒子的探索性能,使粒子更有效地避免陷入新的局部最优。理论证明了引入历史位置的粒子群算法的收敛性。仿真实验结果表明,所提算法不仅能有效解决粒子群已陷入局部最优和过早收敛的问题,且与其他算法相比,具有较快的收敛速度和较高的寻优精度。展开更多
文摘Consider a branching random walk, where the underlying branching mechanism is governed by a Galton-Watson process and the moving law of particles by a discrete random variable on the integer lattice Z. Denote by Zn(z) the number of particles in the n-th generation in the model for each z ∈ Z. We derive the exact convergence rate in the local limit theorem for Zn(z) assuming a condition like "EN(logN)1+λ 〈 ∞" for the offspring distribution and a finite moment condition on the motion law. This complements the known results for the strongly non-lattice branching random walk on the real line and for the simple symmetric branching random walk on the integer lattice.
基金Supported by Special Projects in Key Fields of Colleges and Universities in Guangdong Province(2022ZDZX3016)Projects of Talents Recruitment of GDUPT.
文摘For an elliptic problem with variable coefficients in three dimensions,this article discusses local pointwise convergence of the three-dimensional(3D)finite element.First,the Green's function and the derivative Green's function are introduced.Secondly,some relationship of norms such as L^(2)-norms,W^(1,∞)-norms,and negative-norms in locally smooth subsets of the domainΩis derived.Finally,local pointwise convergence properties of the finite element approximation are obtained.
文摘In this paper we consider lim _(R-) B_R^(f,x_0), in one case that f_x_0 (t) is a ABMV function on [0, ∞], and in another case that f∈L_(m-1)~1(R~) and x^k/~kf∈BV(R) when |k| = m-1 and f(x) = 0 when |x -x_0|<δ for some δ>0. Our theormes improve the results of Pan Wenjie ([1]).
文摘We introduce and study in the present paper the general version of Gauss-type proximal point algorithm (in short GG-PPA) for solving the inclusion , where T is a set-valued mapping which is not necessarily monotone acting from a Banach space X to a subset of a Banach space Y with locally closed graph. The convergence of the GG-PPA is present here by choosing a sequence of functions with , which is Lipschitz continuous in a neighbourhood O of the origin and when T is metrically regular. More precisely, semi-local and local convergence of GG-PPA are analyzed. Moreover, we present a numerical example to validate the convergence result of GG-PPA.
文摘A local convergence theorem and five semi-local convergence theorems of the secant method are listed in this paper. For every convergence theorem, a convergence ball is respectively introduced, where the hypothesis conditions of the corresponding theorem can be satisfied. Since all of these convergence balls have the same center x^*, they can be viewed as a homocentric ball. Convergence theorems are sorted by the different sizes of various radii of this homocentric ball, and the sorted sequence represents the degree of weakness on the conditions of convergence theorems.
基金supported by the National Natural Science Foundation of China(No.10861005)the Natural Science Foundation of Guangxi Province (No.0728206)the Innovation Project of Guangxi Graduate Education(No. 2009105950701M29).
文摘Mathematical programs with complementarity constraints(MPCC) is an important subclass of MPEC.It is a natural way to solve MPCC by constructing a suitable approximation of the primal problem.In this paper,we propose a new smoothing method for MPCC by using the aggregation technique.A new SQP algorithm for solving the MPCC problem is presented.At each iteration,the master direction is computed by solving a quadratic program,and the revised direction for avoiding the Maratos effect is generated by an explicit formula.As the non-degeneracy condition holds and the smoothing parameter tends to zero,the proposed SQP algorithm converges globally to an S-stationary point of the MPEC problem,its convergence rate is superlinear.Some preliminary numerical results are reported.
文摘A modified Gauss-type Proximal Point Algorithm (modified GG-PPA) is presented in this paper for solving the generalized equations like 0 ∈T(x), where T is a set-valued mapping acts between two different Banach spaces X and Y. By considering some necessary assumptions, we show the existence of any sequence generated by the modified GG-PPA and prove the semi-local and local convergence results by using metrically regular mapping. In addition, we give a numerical example to justify the result of semi-local convergence.
基金supported by the National Natural Science Foundation of China (No.12271518)the Key Program of the National Natural Science Foundation of China (No.62333016)。
文摘In this paper,we construct a new sixth order iterative method for solving nonlinear equations.The local convergence and order of convergence of the new iterative method is demonstrated.In order to check the validity of the new iterative method,we employ several chemical engineering applications and academic test problems.Numerical results show the good numerical performance of the new iterative method.Moreover,the dynamical study of the new method also supports the theoretical results.
基金supported by the National Natural Science Foundation of China(No.11971063)。
文摘Consider a branching random walk with a random environment in time in the d-dimensional integer lattice.The branching mechanism is governed by a supercritical branching process,and the particles perform a lazy random walk with an independent,non-identical increment distribution.For A■Z^(d),let Z_(n)(A)be the number of offsprings of generation n located in A.The exact convergence rate of the local limit theorem for the counting measure Z_(n)(·)is obtained.This partially extends the previous results for a simple branching random walk derived by Gao(2017,Stoch.Process Appl.).
基金This work was supported by the National Natural Science Foundation of China (10201001, 70471008)
文摘A noninterior continuation method is proposed for semidefinite complementarity problem (SDCP). This method improves the noninterior continuation methods recently developed for SDCP by Chen and Tseng. The main properties of our method are: (i) it is well d.efined for the monotones SDCP; (ii) it has to solve just one linear system of equations at each step; (iii) it is shown to be both globally linearly convergent and locally quadratically convergent under suitable assumptions.
文摘This paper gives a method of descent for the locally Lipschitzian function. It is assumed that the generalized subgradient set of the differentiable point is a singleton point. We introduce an implementable algorithm which is globally convergent. Numerical examples show the implementation and efficiency of the algorithm .
基金supported by the National Natural Science Foundation of China(Grant Nos.11201169,11271195,and 41231173)the Project of Graduate Education Innovation of Jiangsu Province,China(Grant No.CXLX13 366)
文摘A local energy conservation law is proposed for the Klein--Gordon-Schrrdinger equations, which is held in any local time-space region. The local property is independent of the boundary condition and more essential than the global energy conservation law. To develop a numerical method preserving the intrinsic properties as much as possible, we propose a local energy-preserving (LEP) scheme for the equations. The merit of the proposed scheme is that the local energy conservation law can hold exactly in any time-space region. With the periodic boundary conditions, the scheme also possesses the discrete change and global energy conservation laws. A nonlinear analysis shows that the LEP scheme converges to the exact solutions with order O(τ2 + h2). The theoretical properties are verified by numerical experiments.
基金The first author’s research was supported by the National Natural Science Foundation of China(Grant No.198310110 and Grant No.19871003)the partly support of the Doctoral Foundation of China and the last three authors’research was supported by a gra
文摘This paper considers local median estimation in fixed design regression problems. The proposed method is employed to estimate the median function and the variance function of a heteroscedastic regression model. Strong convergence rates of the proposed estimators are obtained. Simulation results are given to show the performance of the proposed methods.
基金supported by the State Key Program of National Natural Science Foundation of China(11931003)the National Natural Science Foundation of China(41974133)。
文摘In this paper,a local discontinuous Galerkin(LDG)scheme for the time-fractional diffusion equation is proposed and analyzed.The Caputo time-fractional derivative(of orderα,with 0<α<1)is approximated by a finite difference method with an accuracy of order3-α,and the space discretization is based on the LDG method.For the finite difference method,we summarize and supplement some previous work by others,and apply it to the analysis of the convergence and stability of the proposed scheme.The optimal error estimate is obtained in the L2norm,indicating that the scheme has temporal(3-α)th-order accuracy and spatial(k+1)th-order accuracy,where k denotes the highest degree of a piecewise polynomial in discontinuous finite element space.The numerical results are also provided to verify the accuracy and efficiency of the considered scheme.
文摘We give a neccesary and sufficient condition on a function such that the composition operator (Nemytskij Operator) H defined by acts in the space and satisfies a local Lipschitz condition. And, we prove that every locally defined operator mapping the space of continuous and bounded Wiener p(·)-variation with variable exponent functions into itself is a Nemytskij com-position operator.
文摘For two-dimensional(2D)time fractional diffusion equations,we construct a numerical method based on a local discontinuous Galerkin(LDG)method in space and a finite differ-ence scheme in time.We investigate the numerical stability and convergence of the method for both rectangular and triangular meshes and show that the method is unconditionally stable.Numerical results indicate the effectiveness and accuracy of the method and con-firm the analysis.
文摘为解决现有粒子群改进策略无法帮助已陷入局部最优和过早收敛的粒子恢复寻优性能的问题,提出一种陷阱标记联合懒蚂蚁的自适应粒子群优化(adaptive particle swarm optimization based on trap label and lazy ant, TLLA-APSO)算法。陷阱标记策略为粒子群提供动态速度增量,使其摆脱最优解的束缚。利用懒蚂蚁寻优策略多样化粒子速度,提升种群多样性。通过惯性认知策略在速度更新中引入历史位置,增加粒子的路径多样性和提升粒子的探索性能,使粒子更有效地避免陷入新的局部最优。理论证明了引入历史位置的粒子群算法的收敛性。仿真实验结果表明,所提算法不仅能有效解决粒子群已陷入局部最优和过早收敛的问题,且与其他算法相比,具有较快的收敛速度和较高的寻优精度。