In this paper, we propose a product image retrieval method based on the object contour corners, image texture and color. The product image mainly highlights the object and its background is very simple. According to t...In this paper, we propose a product image retrieval method based on the object contour corners, image texture and color. The product image mainly highlights the object and its background is very simple. According to these characteristics, we represent the object using its contour, and detect the corners of contour to reduce the number of pixels. Every corner is described using its approximate curvature based on distance. In addition, the Block Difference of Inverse Probabilities (BDIP) and Block Variation of Local Correlation (BVLC) texture features and color moment are extracted from image's HIS color space. Finally, dynamic time warping method is used to match features with different length. In order to demonstrate the effect of the proposed method, we carry out experiments in Mi-crosoft product image database, and compare it with other feature descriptors. The retrieval precision and recall curves show that our method is feasible.展开更多
The quality of egg is mainly influenced by the dirt adhering to its shell.Even with good farm-management practices and careful handling,a small percentage of dirty eggs will be produced.The purpose of this research wa...The quality of egg is mainly influenced by the dirt adhering to its shell.Even with good farm-management practices and careful handling,a small percentage of dirty eggs will be produced.The purpose of this research was to detect the egg stains by using image processing technique.Compared to the color values,the local texture was found to be much more adept at accurately segmenting of the complex and miscellaneous dirt stains on the egg shell.Firstly,the global threshold of the image was obtained by two-peak method.The irrelevant background was removed by using the global threshold and the interested region was acquired.The local texture information extracted from the interested region was taken as the input of fuzzy C-means clustering for segmentation of the dirt stains.According to the principle of projection,the area of dirt stains on the curved egg surface was accurately calculated.The validation experimental results showed that the proposed method for classifying eggs in terms of stain has the specificity of 91.4%for white eggs and 89.5%for brown eggs.展开更多
基金Supported by the Major Program of National Natural Science Foundation of China (No. 70890080 and No. 70890083)
文摘In this paper, we propose a product image retrieval method based on the object contour corners, image texture and color. The product image mainly highlights the object and its background is very simple. According to these characteristics, we represent the object using its contour, and detect the corners of contour to reduce the number of pixels. Every corner is described using its approximate curvature based on distance. In addition, the Block Difference of Inverse Probabilities (BDIP) and Block Variation of Local Correlation (BVLC) texture features and color moment are extracted from image's HIS color space. Finally, dynamic time warping method is used to match features with different length. In order to demonstrate the effect of the proposed method, we carry out experiments in Mi-crosoft product image database, and compare it with other feature descriptors. The retrieval precision and recall curves show that our method is feasible.
基金The authors gratefully acknowledge the financial support of the National Science&Technology Pillar Program(2015BAD19B05).
文摘The quality of egg is mainly influenced by the dirt adhering to its shell.Even with good farm-management practices and careful handling,a small percentage of dirty eggs will be produced.The purpose of this research was to detect the egg stains by using image processing technique.Compared to the color values,the local texture was found to be much more adept at accurately segmenting of the complex and miscellaneous dirt stains on the egg shell.Firstly,the global threshold of the image was obtained by two-peak method.The irrelevant background was removed by using the global threshold and the interested region was acquired.The local texture information extracted from the interested region was taken as the input of fuzzy C-means clustering for segmentation of the dirt stains.According to the principle of projection,the area of dirt stains on the curved egg surface was accurately calculated.The validation experimental results showed that the proposed method for classifying eggs in terms of stain has the specificity of 91.4%for white eggs and 89.5%for brown eggs.