The heat transfer through a concave permeable fin is analyzed by the local thermal non-equilibrium(LTNE)model.The governing dimensional temperature equations for the solid and fluid phases of the porous extended surfa...The heat transfer through a concave permeable fin is analyzed by the local thermal non-equilibrium(LTNE)model.The governing dimensional temperature equations for the solid and fluid phases of the porous extended surface are modeled,and then are nondimensionalized by suitable dimensionless terms.Further,the obtained nondimensional equations are solved by the clique polynomial method(CPM).The effects of several dimensionless parameters on the fin's thermal profiles are shown by graphical illustrations.Additionally,the current study implements deep neural structures to solve physics-governed coupled equations,and the best-suited hyperparameters are attained by comparison with various network combinations.The results of the CPM and physicsinformed neural network(PINN)exhibit good agreement,signifying that both methods effectively solve the thermal modeling problem.展开更多
To investigate the natural convective process in a hydrodynamically and thermally anisotropic porous medium at the representative elementary volume(REV)scale,the present work presented a multiplerelaxation-time lattic...To investigate the natural convective process in a hydrodynamically and thermally anisotropic porous medium at the representative elementary volume(REV)scale,the present work presented a multiplerelaxation-time lattice Boltzmann method(MRT-LBM)based on the assumption of local thermal non-equilibrium conditions(LTNE).Three sets of distribution function were used to solve the coupled momentum and heat transfer equations.One set was used to compute the flow field based on the generalized non-Darcy model;the other two sets were used to solve the temperature fields of fluid and solid under the LTNE.To describe the anisotropy of flow field of the porous media,a permeability tensor and a Forchheimer coefficient tensor were introduced into the model.Additionally,a heat conductivity tensor and a special relaxation matrix with some off-diagonal elements were selected for the thermal anisotropy.Furthermore,by selecting an appropriate equilibrium moments and discrete source terms accounting for the local thermal non-equilibrium effect,as well as choosing an off-diagonal relaxation matrix with some specific elements,the presented model can recover the exact governing equations for natural convection under LTNE with anisotropic permeability and thermal conductivity with no deviation terms through the Chapman-Enskog procedure.Finally,the proposed model was adopted to simulate several benchmark problems.Good agreements with results in the available literatures can be achieved,which indicate the wide practicability and the good accuracy of the present model.展开更多
Anderson localization of phonons is a kind of phonon wave effect,which has been proved to occur in many structures with disorders.In this work,we introduced aperiodicity to boron nitride/carbon nanotube superlattices(...Anderson localization of phonons is a kind of phonon wave effect,which has been proved to occur in many structures with disorders.In this work,we introduced aperiodicity to boron nitride/carbon nanotube superlattices(BN/C NT SLs),and used molecular dynamics to calculate the thermal conductivity and the phonon transmission spectrum of the models.The existence of phonon Anderson localization was proved in this quasi one-dimensional structure by analyzing the phonon transmission spectra.Moreover,we introduced interfacial mixing to the aperiodic BN/C NT SLs and found that the coexistence of the two disorder entities(aperiodicity and interfacial mixing)can further decrease the thermal conductivity.In addition,we also showed that anharmonicity can destroy phonon localization at high temperatures.This work provides a reference for designing thermoelectric materials with low thermal conductivity by taking advantage of phonon localization.展开更多
Through equilibrium and non-equilibrium molecular dynamics simulations,we have demonstrated the inhibitory effect of composition graded interface on thermal transport behavior in lateral heterostructures.Specifically,...Through equilibrium and non-equilibrium molecular dynamics simulations,we have demonstrated the inhibitory effect of composition graded interface on thermal transport behavior in lateral heterostructures.Specifically,we investigated the influence of composition gradient length and heterogeneous particles at the silicene/germanene(SIL/GER)heterostructure interface on heat conduction.Our results indicate that composition graded interface at the interface diminishes the thermal conductivity of the heterostructure,with a further reduction observed as the length increases,while the effect of the heterogeneous particles can be considered negligible.To unveil the influence of composition graded interface on thermal transport,we conducted phonon analysis and identified the presence of phonon localization within the interface composition graded region.Through these analyses,we have determined that the decrease in thermal conductivity is correlated with phonon localization within the heterostructure,where a stronger degree of phonon localization signifies poorer thermal conductivity in the material.Our research findings not only contribute to understanding the impact of interface gradient-induced phonon localization on thermal transport but also offer insights into the modulation of thermal conductivity in heterostructures.展开更多
To reveal the principles of human thermal responses and find out the effects of body parts on whole-body thermal sensation,through a subjective survey,experimental investigations on human responses are carried out whe...To reveal the principles of human thermal responses and find out the effects of body parts on whole-body thermal sensation,through a subjective survey,experimental investigations on human responses are carried out when a single body part is thermally stimulated.Cooling airflow is sent to seven body parts,respectively.Totally 94 samples are tested.To eliminate the obvious multicollinearity of thermal sensation among different body parts,the principal component regression approach is adopted to obtain the principal components for the body parts under different experimental conditions.Through regression and analysis of principal components,the weighting factors of the seven body parts are obtained.A predictive model on whole-body thermal sensation is obtained based on the weighting factors.The results show that the different characteristics of trunk and limbs are clearly seen.The weighting factors of local thermal sensation are integrated values,and there is little difference among values of different body parts.展开更多
DSOI,bulk Si and SOI MOSFETs are fabricated on the same die successfully using local oxygen implantation process.The thermal properties of the three kinds of devices are described and compared from simulation and mea...DSOI,bulk Si and SOI MOSFETs are fabricated on the same die successfully using local oxygen implantation process.The thermal properties of the three kinds of devices are described and compared from simulation and measurement.Both simulation and measurement prove that DSOI MOSFETs have the advantage of much lower thermal resistance of substrate and suffer less severe self heating effect than their SOI counterparts. At the same time,the electrical advantages of SOI devices can stay.The thermal resistance of DSOI devices is very close to that of bulk devices and DSOI devices can keep this advantage into deep sub micron realm.展开更多
Based on the porous media theory and by taking into account the efects of the pore fuid viscidity, energy exchanges due to the additional thermal conduction and convection between solid and fuid phases, a mathematical...Based on the porous media theory and by taking into account the efects of the pore fuid viscidity, energy exchanges due to the additional thermal conduction and convection between solid and fuid phases, a mathematical model for the dynamic-thermo-hydro-mechanical coupling of a non-local thermal equilibrium fuid-saturated porous medium, in which the two constituents are assumed to be incompressible and immiscible, is established under the assumption of small de- formation of the solid phase, small velocity of the fuid phase and small temperature changes of the two constituents. The mathematical model of a local thermal equilibrium fuid-saturated porous medium can be obtained directly from the above one. Several Gurtin-type variational principles, especially Hu-Washizu type variational principles, for the initial boundary value problems of dy- namic and quasi-static responses are presented. It should be pointed out that these variational principles can be degenerated easily into the case of isothermal incompressible fuid-saturated elastic porous media, which have been discussed previously.展开更多
The parametric excited vibration of a pipe under thermal loading may occur because the fluid is often transported heatedly. The effects of thermal loading on the pipe stability and local bifurcations have rarely been ...The parametric excited vibration of a pipe under thermal loading may occur because the fluid is often transported heatedly. The effects of thermal loading on the pipe stability and local bifurcations have rarely been studied. The stability and the local bifurcations of the lateral parametric resonance of the pipe induced by the pulsating fluid velocity and the thermal loading are studied. A mathematical model for a simply supported pipe is developed according to the Hamilton principle. Two partial differential equations describing the lateral and longitudinal vibration are obtained. The singularity theory is utilized to anMyze the stability and the bifurcation of the system solutions. The transition sets and the bifurcation diagrams are obtained both in the unfolding parameter space and the physical parameter space, which can reveal the relationship between the thermal field parameter and the dynamic behaviors of the pipe. The frequency response and the relationship between the critical thermal rate and the pulsating fluid velocity are obtained. The numerical results demonstrate the accuracy of the single-mode expansion of the solution and the stability and local bifurcation analyses. It also confirms the existence of the chaos. The presented work can provide valuable information for the design of the pipeline and the controllers to prevent the structural instability.展开更多
The 10Ni5CrMoV steel examined was a 16 mm thick plate. Specimens measuring 12 mm×12 mm×120 mm were thermally cycled using DM-100A weld simulator with various parameters. The main results are summarized as fo...The 10Ni5CrMoV steel examined was a 16 mm thick plate. Specimens measuring 12 mm×12 mm×120 mm were thermally cycled using DM-100A weld simulator with various parameters. The main results are summarized as follaws. In the coarse-grained austenitized region( Tm = 1 300℃ + 1300℃ ) ,the microstructure is in good toughness. At the condition of Tm = 1 300℃ + 850℃ and t8/5=43 s, the toughness decreases heavily because M-A constituent and twin martensite appear at the prior aastenite grain boundaries. When Tm= 1300℃ + 850℃ or 1300℃ + 730℃ and t8/5 = 85 s, local brittle zone is formed because of relatively coarse granular bainite.展开更多
The stability and local bifurcation of the lateral parameter-excited resonance of pipes induced by the pulsating fluid velocity and thermal load are studied. A mathematical model for a simply supported pipe is develop...The stability and local bifurcation of the lateral parameter-excited resonance of pipes induced by the pulsating fluid velocity and thermal load are studied. A mathematical model for a simply supported pipe is developed according to Hamilton principle. The Galerkin method is adopted to discretize the partial differential equations to the ordinary differential equations. The method of multiple scales and the singularity theory are utilized to analyze the stability and bifurcation of the trivial and non-trivial solutions. The transition sets and bifurcation diagrams are obtained both in the unfolding parameter space and physical parameter space, which can reveal the relationship between the thermal field parameter and the dynamic behaviors of the pipe. The numerical results demonstrate the accuracy of the single-mode expansion of the solution and verify the stability and local bifurcation analyses. The critical thermal rates are obtained both by the numerical simulation and the local bifurcation analysis. The natural frequency of lateral vibration decreases as the mean fluid velocity or the thermal rate increases according to the numerical results. The present work can provide valuable information for the design of the pipeline and controllers to prevent structural instability.展开更多
Local thermal effect influencing the fluorescence of triply ionized rare earth ions doped in nanocrystals is studied with laser spectroscopy and theory of thermal transportation for transparent oxyfluoride glass ceram...Local thermal effect influencing the fluorescence of triply ionized rare earth ions doped in nanocrystals is studied with laser spectroscopy and theory of thermal transportation for transparent oxyfluoride glass ceramics containing nanocrystals. The result shows that the local temperature of the nanocrystals embedded in glass matrices is much higher than the environmental temperature of the sample. It is suggested that the tempera,ture-dependent thermal energy induced by the light absorption must be considered when the theory of thermal transportation is applied to the study of local thermal effect.展开更多
Based on the two-energy equation model, taking into account viscous dissipation due to the interaction between solid skeleton and pore fluid flow, temperature expressions of the solid skeleton and pore fluid flow are ...Based on the two-energy equation model, taking into account viscous dissipation due to the interaction between solid skeleton and pore fluid flow, temperature expressions of the solid skeleton and pore fluid flow are obtained analytically for the thermally developing forced convection in a saturated porous medium parallel plate channel, with walls being at constant temperature. It is proved that the temperatures of the two phases for the local thermal nonequilibrium approach to the temperature derived from the one-energy equation model for the local thermal equilibrium when the heat exchange coefficient goes to infinite. The temperature profiles are shown in figures for different dimensionless parameters and the effects of the parameters on the local thermal nonequilibrium are revealed by parameter study.展开更多
A zonalwetiCal two-dimensional equatorial model is used to study the PO ̄ty that the long Period oSCillation of the zonal mean now occurring in the lower equatorial stratosphere(QBO) is cause by local thermal activihe...A zonalwetiCal two-dimensional equatorial model is used to study the PO ̄ty that the long Period oSCillation of the zonal mean now occurring in the lower equatorial stratosphere(QBO) is cause by local thermal activihes at the tropiCal tropopause.The model sumesfully reproduces Q ̄like o ̄tions of the zonal mean now,suggeshng that the lOCal heating or cooling at the trOPical trOPOpose is Probably the main  ̄n of QBO,s generahon. The analysis of the dependence of the oedllahon on the wave foeing iudicatw that the o ̄hon is not areaible to the forCing scale.The model can reproduce QBO--like oscillahons with any forCing ̄if the forcing Period and amplitude take appropriate valuex, proving that the inaneal cavity waves ge ̄od by lOCal thermal sough take much important roles in QBO.展开更多
Localization,one of the basic phenomena for wave transport,has been demonstrated to be an effective strategy to manipulate electronic,photonic,and acoustic properties of materials.Due to the wave nature of phonons,the...Localization,one of the basic phenomena for wave transport,has been demonstrated to be an effective strategy to manipulate electronic,photonic,and acoustic properties of materials.Due to the wave nature of phonons,the tuning of thermal properties through phonon localization would also be expected,which is beneficial to many applications such as thermoelectrics,electronics,and phononics.With the development of nanotechnology,nanostructures with characteristic length about ten nanometers can give rise to phonon localization,which has attracted considerable attention in recent years.This review aims to summarize recent advances with theoretical,simulative,and experimental studies toward understanding,prediction,and utilization of phonon localization in disordered nanostructures,focuses on the effect of phonon localization on thermal conductivity.Based on previous researches,perspectives regarding further researches to clarify this hecticinvestigated and immature topic and its exact effect on thermal transport are given.展开更多
A two-temperature(2 T)thermal non-equilibrium model is developed to address the thermal nonequilibrium phenomenon that inevitably exists in the reverse-polarity plasma torch(RPT)and applied to numerically investigate ...A two-temperature(2 T)thermal non-equilibrium model is developed to address the thermal nonequilibrium phenomenon that inevitably exists in the reverse-polarity plasma torch(RPT)and applied to numerically investigate the plasma flow characteristics inside and outside the RPT.Then,a detailed comparison of the results of the 2 T model with those of the local thermal equilibrium(LTE)model is presented.Furthermore,the temperature of the plasma jet generated by a RPT and the RPT’s voltage are experimentally measured to compare and validate the result obtained by different models.The differences of the measured excitation temperature and the arc voltage between the 2 T model and experimental measurement are less than 13%and 8%,respectively,in all operating cases,validating the effectiveness of the 2 T model.The LTE model overestimates the velocity and temperature distribution of the RPT and its plasma jet,showing that thermal non-equilibrium phenomena cannot be neglected in the numerical modelling of the RPT.Unlike other common hot cathode plasma torches,the thermal non-equilibrium phenomenon is found even in the arc core of the RPT,due to the strong cooling effect caused by the big gas flow rate.展开更多
The combined effect of magnetic field, thermal radiation and local suction on the steady turbulent compressible boundary layer flow with adverse pressure gradient is numerically studied. The magnetic field is constant...The combined effect of magnetic field, thermal radiation and local suction on the steady turbulent compressible boundary layer flow with adverse pressure gradient is numerically studied. The magnetic field is constant and applied transversely to the direction of the flow. The fluid is subjected to a localized suction and is considered as a radiative optically thin gray fluid. The Reynolds Averaged Boundary Layer (RABL) equations with appropriate boundary conditions are transformed using the compressible Falkner Skan transformation. The nonlinear and coupled system of partial differential equations (PDEs) is solved using the Keller box method. For the eddy-kinematic viscosity the Baldwin Lomax turbulent model and for the turbulent Prandtl number the extended Kays Crawford model are used. The numerical results show that the flow field can be controlled by the combined effect of the applied magnetic field, thermal radiation, and localized suction, moving the separation point, xs , downstream towards the plate’s end, and increasing total drag, D . The combined effect of thermal radiation and magnetic field has a cooling effect on the fluid at the wall vicinity. The combined effect has a greater influence in the case of high free-stream temperature.展开更多
Local climate zones(LCZs)are an effective nexus linking internal urban structures to the local climate and have been widely used to study urban thermal environment.However,few studies considered how much the temperatu...Local climate zones(LCZs)are an effective nexus linking internal urban structures to the local climate and have been widely used to study urban thermal environment.However,few studies considered how much the temperature changed due to LCZs transformation and their synergy.This paper quantified the change of urban land surface temperature(LST)in LCZs transformation process by combining the land use transfer matrix with zonal statistics method during 2000–2019 in the Xi’an metropolitan.The results show that,firstly,both LCZs and LST had significant spatiotemporal variations and synchrony.The period when the most LCZs were converted was also the LST rose the fastest,and the spatial growth of the LST coincided with the spatial expansion of the built type LCZs.Secondly,the LST difference between land cover type LCZs and built type LCZs gradually widened.And LST rose more in both built type LCZs transferred in and out.Finally,the Xi’an-Xianyang profile showed that the maximum temperature difference between the peaks and valleys of the LST increased by 4.39℃,indicating that localized high temperature phenomena and fluctuations in the urban thermal environment became more pronounced from 2000 to 2019.展开更多
This work focuses on the valorization of local materials.The rock that is granite,a material used in construction thanks to its mechanical resistance,is the subject of our study.The granite of the commune of Savè...This work focuses on the valorization of local materials.The rock that is granite,a material used in construction thanks to its mechanical resistance,is the subject of our study.The granite of the commune of Savè,made it possible to appreciate the thermal behavior of this rock studied with a view to its use as a building material.To this end,a thermal diffusivity measurement test was carried out on this material.Thus,we made samples which were then connected to a data acquisition box via thermocouples.A Python script is used to ensure the collection of temperature values over time.From this thermal diffusivity test carried out on the granite taken from the Savèbreasts,we obtained an average diffusivity a=5.84×10^(-6)m^(2)/s.As a result,the thermal effusivity and the heat capacity of the material were determined having respectively the value 1,351.09 J/(K·m^(2)·s^(1/2))and 547,945.21 J/(m^(3)·K).These different results highlight a thermal characterization of Savègranites as a relevant material in the design and construction of an energy-efficient eco-housing.展开更多
基金funding this work through Small Research Project under grant number RGP.1/141/45。
文摘The heat transfer through a concave permeable fin is analyzed by the local thermal non-equilibrium(LTNE)model.The governing dimensional temperature equations for the solid and fluid phases of the porous extended surface are modeled,and then are nondimensionalized by suitable dimensionless terms.Further,the obtained nondimensional equations are solved by the clique polynomial method(CPM).The effects of several dimensionless parameters on the fin's thermal profiles are shown by graphical illustrations.Additionally,the current study implements deep neural structures to solve physics-governed coupled equations,and the best-suited hyperparameters are attained by comparison with various network combinations.The results of the CPM and physicsinformed neural network(PINN)exhibit good agreement,signifying that both methods effectively solve the thermal modeling problem.
基金supported by the National Natural Science Foundation of China(Grant No.51806067)China Postdoctoral Science Foundation(Granted No.2015M572310)+2 种基金Fundamental Research Funds for the Central Universities(Granted No.2017MS018)Guangdong Province Science and Technology projects(Grante 2017A040402005)Guangdong Bureau of Quality and Technical Supervision Science and Technology projects(Granted No.2016CT23)。
文摘To investigate the natural convective process in a hydrodynamically and thermally anisotropic porous medium at the representative elementary volume(REV)scale,the present work presented a multiplerelaxation-time lattice Boltzmann method(MRT-LBM)based on the assumption of local thermal non-equilibrium conditions(LTNE).Three sets of distribution function were used to solve the coupled momentum and heat transfer equations.One set was used to compute the flow field based on the generalized non-Darcy model;the other two sets were used to solve the temperature fields of fluid and solid under the LTNE.To describe the anisotropy of flow field of the porous media,a permeability tensor and a Forchheimer coefficient tensor were introduced into the model.Additionally,a heat conductivity tensor and a special relaxation matrix with some off-diagonal elements were selected for the thermal anisotropy.Furthermore,by selecting an appropriate equilibrium moments and discrete source terms accounting for the local thermal non-equilibrium effect,as well as choosing an off-diagonal relaxation matrix with some specific elements,the presented model can recover the exact governing equations for natural convection under LTNE with anisotropic permeability and thermal conductivity with no deviation terms through the Chapman-Enskog procedure.Finally,the proposed model was adopted to simulate several benchmark problems.Good agreements with results in the available literatures can be achieved,which indicate the wide practicability and the good accuracy of the present model.
文摘Anderson localization of phonons is a kind of phonon wave effect,which has been proved to occur in many structures with disorders.In this work,we introduced aperiodicity to boron nitride/carbon nanotube superlattices(BN/C NT SLs),and used molecular dynamics to calculate the thermal conductivity and the phonon transmission spectrum of the models.The existence of phonon Anderson localization was proved in this quasi one-dimensional structure by analyzing the phonon transmission spectra.Moreover,we introduced interfacial mixing to the aperiodic BN/C NT SLs and found that the coexistence of the two disorder entities(aperiodicity and interfacial mixing)can further decrease the thermal conductivity.In addition,we also showed that anharmonicity can destroy phonon localization at high temperatures.This work provides a reference for designing thermoelectric materials with low thermal conductivity by taking advantage of phonon localization.
基金Project supported by the National Natural Science Foundation of China (Grant No.12104291)。
文摘Through equilibrium and non-equilibrium molecular dynamics simulations,we have demonstrated the inhibitory effect of composition graded interface on thermal transport behavior in lateral heterostructures.Specifically,we investigated the influence of composition gradient length and heterogeneous particles at the silicene/germanene(SIL/GER)heterostructure interface on heat conduction.Our results indicate that composition graded interface at the interface diminishes the thermal conductivity of the heterostructure,with a further reduction observed as the length increases,while the effect of the heterogeneous particles can be considered negligible.To unveil the influence of composition graded interface on thermal transport,we conducted phonon analysis and identified the presence of phonon localization within the interface composition graded region.Through these analyses,we have determined that the decrease in thermal conductivity is correlated with phonon localization within the heterostructure,where a stronger degree of phonon localization signifies poorer thermal conductivity in the material.Our research findings not only contribute to understanding the impact of interface gradient-induced phonon localization on thermal transport but also offer insights into the modulation of thermal conductivity in heterostructures.
基金The National Natural Science Foundation of China(No.50678030)
文摘To reveal the principles of human thermal responses and find out the effects of body parts on whole-body thermal sensation,through a subjective survey,experimental investigations on human responses are carried out when a single body part is thermally stimulated.Cooling airflow is sent to seven body parts,respectively.Totally 94 samples are tested.To eliminate the obvious multicollinearity of thermal sensation among different body parts,the principal component regression approach is adopted to obtain the principal components for the body parts under different experimental conditions.Through regression and analysis of principal components,the weighting factors of the seven body parts are obtained.A predictive model on whole-body thermal sensation is obtained based on the weighting factors.The results show that the different characteristics of trunk and limbs are clearly seen.The weighting factors of local thermal sensation are integrated values,and there is little difference among values of different body parts.
文摘DSOI,bulk Si and SOI MOSFETs are fabricated on the same die successfully using local oxygen implantation process.The thermal properties of the three kinds of devices are described and compared from simulation and measurement.Both simulation and measurement prove that DSOI MOSFETs have the advantage of much lower thermal resistance of substrate and suffer less severe self heating effect than their SOI counterparts. At the same time,the electrical advantages of SOI devices can stay.The thermal resistance of DSOI devices is very close to that of bulk devices and DSOI devices can keep this advantage into deep sub micron realm.
基金Project supported by the National Natural Science Foundation of China(No.10272070)and the Development Foun-dation of the Education Commission of Shanghai,China.
文摘Based on the porous media theory and by taking into account the efects of the pore fuid viscidity, energy exchanges due to the additional thermal conduction and convection between solid and fuid phases, a mathematical model for the dynamic-thermo-hydro-mechanical coupling of a non-local thermal equilibrium fuid-saturated porous medium, in which the two constituents are assumed to be incompressible and immiscible, is established under the assumption of small de- formation of the solid phase, small velocity of the fuid phase and small temperature changes of the two constituents. The mathematical model of a local thermal equilibrium fuid-saturated porous medium can be obtained directly from the above one. Several Gurtin-type variational principles, especially Hu-Washizu type variational principles, for the initial boundary value problems of dy- namic and quasi-static responses are presented. It should be pointed out that these variational principles can be degenerated easily into the case of isothermal incompressible fuid-saturated elastic porous media, which have been discussed previously.
基金Project supported by the National Natural Science Foundation of Shandong Province(No.ZR2013AL017)the National Natural Science Foundation of China(No.11272357)the Fundamental Research Funds for the Central Universities of China(No.11CX04049A)
文摘The parametric excited vibration of a pipe under thermal loading may occur because the fluid is often transported heatedly. The effects of thermal loading on the pipe stability and local bifurcations have rarely been studied. The stability and the local bifurcations of the lateral parametric resonance of the pipe induced by the pulsating fluid velocity and the thermal loading are studied. A mathematical model for a simply supported pipe is developed according to the Hamilton principle. Two partial differential equations describing the lateral and longitudinal vibration are obtained. The singularity theory is utilized to anMyze the stability and the bifurcation of the system solutions. The transition sets and the bifurcation diagrams are obtained both in the unfolding parameter space and the physical parameter space, which can reveal the relationship between the thermal field parameter and the dynamic behaviors of the pipe. The frequency response and the relationship between the critical thermal rate and the pulsating fluid velocity are obtained. The numerical results demonstrate the accuracy of the single-mode expansion of the solution and the stability and local bifurcation analyses. It also confirms the existence of the chaos. The presented work can provide valuable information for the design of the pipeline and the controllers to prevent the structural instability.
文摘The 10Ni5CrMoV steel examined was a 16 mm thick plate. Specimens measuring 12 mm×12 mm×120 mm were thermally cycled using DM-100A weld simulator with various parameters. The main results are summarized as follaws. In the coarse-grained austenitized region( Tm = 1 300℃ + 1300℃ ) ,the microstructure is in good toughness. At the condition of Tm = 1 300℃ + 850℃ and t8/5=43 s, the toughness decreases heavily because M-A constituent and twin martensite appear at the prior aastenite grain boundaries. When Tm= 1300℃ + 850℃ or 1300℃ + 730℃ and t8/5 = 85 s, local brittle zone is formed because of relatively coarse granular bainite.
基金Supported by the Natural Science Foundation of Shandong Province of China(No.ZR2013AL017)the Fundamental Research Funds for the Central Universities of China(No.11CX04049A,No.12CX04071A)
文摘The stability and local bifurcation of the lateral parameter-excited resonance of pipes induced by the pulsating fluid velocity and thermal load are studied. A mathematical model for a simply supported pipe is developed according to Hamilton principle. The Galerkin method is adopted to discretize the partial differential equations to the ordinary differential equations. The method of multiple scales and the singularity theory are utilized to analyze the stability and bifurcation of the trivial and non-trivial solutions. The transition sets and bifurcation diagrams are obtained both in the unfolding parameter space and physical parameter space, which can reveal the relationship between the thermal field parameter and the dynamic behaviors of the pipe. The numerical results demonstrate the accuracy of the single-mode expansion of the solution and verify the stability and local bifurcation analyses. The critical thermal rates are obtained both by the numerical simulation and the local bifurcation analysis. The natural frequency of lateral vibration decreases as the mean fluid velocity or the thermal rate increases according to the numerical results. The present work can provide valuable information for the design of the pipeline and controllers to prevent structural instability.
文摘Local thermal effect influencing the fluorescence of triply ionized rare earth ions doped in nanocrystals is studied with laser spectroscopy and theory of thermal transportation for transparent oxyfluoride glass ceramics containing nanocrystals. The result shows that the local temperature of the nanocrystals embedded in glass matrices is much higher than the environmental temperature of the sample. It is suggested that the tempera,ture-dependent thermal energy induced by the light absorption must be considered when the theory of thermal transportation is applied to the study of local thermal effect.
基金Project supported by the National Natural Science Foundation of China (No. 10272070) and the Shanghai Leading Academic Discipline Project (No.Y0103)
文摘Based on the two-energy equation model, taking into account viscous dissipation due to the interaction between solid skeleton and pore fluid flow, temperature expressions of the solid skeleton and pore fluid flow are obtained analytically for the thermally developing forced convection in a saturated porous medium parallel plate channel, with walls being at constant temperature. It is proved that the temperatures of the two phases for the local thermal nonequilibrium approach to the temperature derived from the one-energy equation model for the local thermal equilibrium when the heat exchange coefficient goes to infinite. The temperature profiles are shown in figures for different dimensionless parameters and the effects of the parameters on the local thermal nonequilibrium are revealed by parameter study.
文摘A zonalwetiCal two-dimensional equatorial model is used to study the PO ̄ty that the long Period oSCillation of the zonal mean now occurring in the lower equatorial stratosphere(QBO) is cause by local thermal activihes at the tropiCal tropopause.The model sumesfully reproduces Q ̄like o ̄tions of the zonal mean now,suggeshng that the lOCal heating or cooling at the trOPical trOPOpose is Probably the main  ̄n of QBO,s generahon. The analysis of the dependence of the oedllahon on the wave foeing iudicatw that the o ̄hon is not areaible to the forCing scale.The model can reproduce QBO--like oscillahons with any forCing ̄if the forcing Period and amplitude take appropriate valuex, proving that the inaneal cavity waves ge ̄od by lOCal thermal sough take much important roles in QBO.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11975125,11890703,and 21803031)the Natural Science Foundation of the Jiangsu Higher Education Institution of China(Grant No.18KJB150022)+1 种基金Postdoctoral Research Funding Program of Jiangsu,China(Grant No.2020Z163)China Postdoctoral Science Foundation(Grant No.2020M671533)。
文摘Localization,one of the basic phenomena for wave transport,has been demonstrated to be an effective strategy to manipulate electronic,photonic,and acoustic properties of materials.Due to the wave nature of phonons,the tuning of thermal properties through phonon localization would also be expected,which is beneficial to many applications such as thermoelectrics,electronics,and phononics.With the development of nanotechnology,nanostructures with characteristic length about ten nanometers can give rise to phonon localization,which has attracted considerable attention in recent years.This review aims to summarize recent advances with theoretical,simulative,and experimental studies toward understanding,prediction,and utilization of phonon localization in disordered nanostructures,focuses on the effect of phonon localization on thermal conductivity.Based on previous researches,perspectives regarding further researches to clarify this hecticinvestigated and immature topic and its exact effect on thermal transport are given.
基金support from National Natural Science Foundation of China(No.51875372)the Key R&D Program of Advanced Technology of Sichuan Science and Technology Department(No.2020YFG0111)。
文摘A two-temperature(2 T)thermal non-equilibrium model is developed to address the thermal nonequilibrium phenomenon that inevitably exists in the reverse-polarity plasma torch(RPT)and applied to numerically investigate the plasma flow characteristics inside and outside the RPT.Then,a detailed comparison of the results of the 2 T model with those of the local thermal equilibrium(LTE)model is presented.Furthermore,the temperature of the plasma jet generated by a RPT and the RPT’s voltage are experimentally measured to compare and validate the result obtained by different models.The differences of the measured excitation temperature and the arc voltage between the 2 T model and experimental measurement are less than 13%and 8%,respectively,in all operating cases,validating the effectiveness of the 2 T model.The LTE model overestimates the velocity and temperature distribution of the RPT and its plasma jet,showing that thermal non-equilibrium phenomena cannot be neglected in the numerical modelling of the RPT.Unlike other common hot cathode plasma torches,the thermal non-equilibrium phenomenon is found even in the arc core of the RPT,due to the strong cooling effect caused by the big gas flow rate.
文摘The combined effect of magnetic field, thermal radiation and local suction on the steady turbulent compressible boundary layer flow with adverse pressure gradient is numerically studied. The magnetic field is constant and applied transversely to the direction of the flow. The fluid is subjected to a localized suction and is considered as a radiative optically thin gray fluid. The Reynolds Averaged Boundary Layer (RABL) equations with appropriate boundary conditions are transformed using the compressible Falkner Skan transformation. The nonlinear and coupled system of partial differential equations (PDEs) is solved using the Keller box method. For the eddy-kinematic viscosity the Baldwin Lomax turbulent model and for the turbulent Prandtl number the extended Kays Crawford model are used. The numerical results show that the flow field can be controlled by the combined effect of the applied magnetic field, thermal radiation, and localized suction, moving the separation point, xs , downstream towards the plate’s end, and increasing total drag, D . The combined effect of thermal radiation and magnetic field has a cooling effect on the fluid at the wall vicinity. The combined effect has a greater influence in the case of high free-stream temperature.
基金Under the auspices of National Natural Science Foundation of China(No.42271214,41961027)Key Program of Natural Science Foundation of Gansu Province(No.21JR7RA278,21JR7RA281)+1 种基金the CAS‘Light of West China’Program(No.2020XBZGXBQNXZ-A)Basic Research Top Talent Plan of Lanzhou Jiaotong University(No.2022JC01)。
文摘Local climate zones(LCZs)are an effective nexus linking internal urban structures to the local climate and have been widely used to study urban thermal environment.However,few studies considered how much the temperature changed due to LCZs transformation and their synergy.This paper quantified the change of urban land surface temperature(LST)in LCZs transformation process by combining the land use transfer matrix with zonal statistics method during 2000–2019 in the Xi’an metropolitan.The results show that,firstly,both LCZs and LST had significant spatiotemporal variations and synchrony.The period when the most LCZs were converted was also the LST rose the fastest,and the spatial growth of the LST coincided with the spatial expansion of the built type LCZs.Secondly,the LST difference between land cover type LCZs and built type LCZs gradually widened.And LST rose more in both built type LCZs transferred in and out.Finally,the Xi’an-Xianyang profile showed that the maximum temperature difference between the peaks and valleys of the LST increased by 4.39℃,indicating that localized high temperature phenomena and fluctuations in the urban thermal environment became more pronounced from 2000 to 2019.
文摘This work focuses on the valorization of local materials.The rock that is granite,a material used in construction thanks to its mechanical resistance,is the subject of our study.The granite of the commune of Savè,made it possible to appreciate the thermal behavior of this rock studied with a view to its use as a building material.To this end,a thermal diffusivity measurement test was carried out on this material.Thus,we made samples which were then connected to a data acquisition box via thermocouples.A Python script is used to ensure the collection of temperature values over time.From this thermal diffusivity test carried out on the granite taken from the Savèbreasts,we obtained an average diffusivity a=5.84×10^(-6)m^(2)/s.As a result,the thermal effusivity and the heat capacity of the material were determined having respectively the value 1,351.09 J/(K·m^(2)·s^(1/2))and 547,945.21 J/(m^(3)·K).These different results highlight a thermal characterization of Savègranites as a relevant material in the design and construction of an energy-efficient eco-housing.