This paper introduces the localized Radon transform (LRT) into time-frequency distributions and presents the localized Radon-Wigner transform (LRWT). The definition of LRWT and a fast algorithm is derived, the propert...This paper introduces the localized Radon transform (LRT) into time-frequency distributions and presents the localized Radon-Wigner transform (LRWT). The definition of LRWT and a fast algorithm is derived, the properties of LRWT and its relationship with Radon-Wigner transform, Wigner distribution (WD), ambiguity function (AF), and generalized-marginal time-frequency distributions are analyzed.展开更多
The use of time-frequency entropy to quantitatively assess the stability of submerged arc welding process considering the distribution features of arc energy is reported in this paper. Time-frequency entropy is employ...The use of time-frequency entropy to quantitatively assess the stability of submerged arc welding process considering the distribution features of arc energy is reported in this paper. Time-frequency entropy is employed to calculate and analyze the stationary current signals, non-stationary current and voltage signals in the submerged arc welding process. It is obtained that time-frequency entropy of arc signal can be used as arc stability judgment criteria of submerged arc welding. Experimental results are provided to confirm the effectiveness of this approach.展开更多
The local wave method is a very good time-frequency method for nonstationaryvibration signal analysis. But the interfering noise has a big influence on the accuracy oftime-frequency analysis. The wavelet packet de-noi...The local wave method is a very good time-frequency method for nonstationaryvibration signal analysis. But the interfering noise has a big influence on the accuracy oftime-frequency analysis. The wavelet packet de-noising method can eliminate the interference ofnoise and improve the signal-noise-ratio. This paper uses the local wave method to decompose thede-noising signal and perform a time-frequency analysis. We can get better characteristics. Finally,an example of wavelet packet de-noising and a local wave time-frequency spectrum application ofdiesel engine surface vibration signal is put forward.展开更多
A new method of fault analysis and detection by signal classification inrotating machines is presented. The Local Wave time-frequency spectrum which is a new method forprocessing a non-stationary signal is used to pro...A new method of fault analysis and detection by signal classification inrotating machines is presented. The Local Wave time-frequency spectrum which is a new method forprocessing a non-stationary signal is used to produce the representation of the signal. This methodallows the decomposition of one-dimensional signals into intrinsic mode functions (IMFs) usingempirical mode decomposition and the calculation of a meaningful multi-component instantaneousfrequency. Applied to fault signals , it provides new time-frequency attributes. Then the momentsand margins of the time-frequency spectrum are calculated as the feature vectors. The probabilisticneural network is used to classify different fault modes. The accuracy and robustness of theproposed methods is investigated on signals obtained during the different fault modes (early rub,loose, misalignment of the rotor).展开更多
Recently,it was discovered that the entropy-conserving/dissipative high-order split-form discontinuous Galerkin discretizations have robustness issues when trying to solve the sim-ple density wave propagation example ...Recently,it was discovered that the entropy-conserving/dissipative high-order split-form discontinuous Galerkin discretizations have robustness issues when trying to solve the sim-ple density wave propagation example for the compressible Euler equations.The issue is related to missing local linear stability,i.e.,the stability of the discretization towards per-turbations added to a stable base flow.This is strongly related to an anti-diffusion mech-anism,that is inherent in entropy-conserving two-point fluxes,which are a key ingredi-ent for the high-order discontinuous Galerkin extension.In this paper,we investigate if pressure equilibrium preservation is a remedy to these recently found local linear stability issues of entropy-conservative/dissipative high-order split-form discontinuous Galerkin methods for the compressible Euler equations.Pressure equilibrium preservation describes the property of a discretization to keep pressure and velocity constant for pure density wave propagation.We present the full theoretical derivation,analysis,and show corresponding numerical results to underline our findings.In addition,we characterize numerical fluxes for the Euler equations that are entropy-conservative,kinetic-energy-preserving,pressure-equilibrium-preserving,and have a density flux that does not depend on the pressure.The source code to reproduce all numerical experiments presented in this article is available online(https://doi.org/10.5281/zenodo.4054366).展开更多
The Q-factor is an important physical parameter for characterizing the absorption and attenuation of seismic waves propagating in underground media,which is of great signifi cance for improving the resolution of seism...The Q-factor is an important physical parameter for characterizing the absorption and attenuation of seismic waves propagating in underground media,which is of great signifi cance for improving the resolution of seismic data,oil and gas detection,and reservoir description.In this paper,the local centroid frequency is defi ned using shaping regularization and used to estimate the Q values of the formation.We propose a continuous time-varying Q-estimation method in the time-frequency domain according to the local centroid frequency,namely,the local centroid frequency shift(LCFS)method.This method can reasonably reduce the calculation error caused by the low accuracy of the time picking of the target formation in the traditional methods.The theoretical and real seismic data processing results show that the time-varying Q values can be accurately estimated using the LCFS method.Compared with the traditional Q-estimation methods,this method does not need to extract the top and bottom interfaces of the target formation;it can also obtain relatively reasonable Q values when there is no eff ective frequency spectrum information.Simultaneously,a reasonable inverse Q fi ltering result can be obtained using the continuous time-varying Q values.展开更多
The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the targe...The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the target crosses the baseline is constructed.Then,the detection method of the for-ward-scatter signal based on the Rényi entropy of time-fre-quency distribution is proposed and the detection performance with different time-frequency distributions is compared.Simula-tion results show that the method based on the smooth pseudo Wigner-Ville distribution(SPWVD)can achieve the best perfor-mance.Next,combined with the geometry of FSR,the influence on detection performance of the relative distance between the target and the baseline is analyzed.Finally,the proposed method is validated by the anechoic chamber measurements and the results show that the detection ability has a 10 dB improvement compared with the common constant false alarm rate(CFAR)detection.展开更多
A variation pixels identification method was proposed aiming at depressing the effect of variation pixels, which dilates the theoretical hyperspectral data simplex and misguides volume evaluation of the simplex. With ...A variation pixels identification method was proposed aiming at depressing the effect of variation pixels, which dilates the theoretical hyperspectral data simplex and misguides volume evaluation of the simplex. With integration of both spatial and spectral information, this method quantitatively defines a variation index for every pixel. The variation index is proportional to pixels local entropy but inversely proportional to pixels kernel spatial attraction. The number of pixels removed was modulated by an artificial threshold factor α. Two real hyperspectral data sets were employed to examine the endmember extraction results. The reconstruction errors of preprocessing data as opposed to the result of original data were compared. The experimental results show that the number of distinct endmembers extracted has increased and the reconstruction error is greatly reduced. 100% is an optional value for the threshold factor α when dealing with no prior knowledge hyperspectral data.展开更多
This paper presents a method for detecting the small infrared target under complex background. An algorithm, named local mutation weighted information entropy (LMWIE), is proposed to suppress background. Then, the g...This paper presents a method for detecting the small infrared target under complex background. An algorithm, named local mutation weighted information entropy (LMWIE), is proposed to suppress background. Then, the grey value of targets is enhanced by calculating the local energy. Image segmentation based on the adaptive threshold is used to solve the problems that the grey value of noise is enhanced with the grey value improvement of targets. Experimental results show that compared with the adaptive Butterworth high-pass filter method, the proposed algorithm is more effective and faster for the infrared small target detection.展开更多
To diagnosethe reciprocating mechanical fault.We utilizedlocal waveti me-frequency approach.Firstly,we gave the principle.Secondly,the application of local wave ti me-frequency was given.Finally,we discusseditsvirtue ...To diagnosethe reciprocating mechanical fault.We utilizedlocal waveti me-frequency approach.Firstly,we gave the principle.Secondly,the application of local wave ti me-frequency was given.Finally,we discusseditsvirtue in reciprocating mechanical fault diagnosis.展开更多
Bearing fault signal is nonlinear and non-stationary, therefore proposed a fault feature extraction method based on wavelet packet decomposition (WPD) and local mean decomposition (LMD) permutation entropy, which ...Bearing fault signal is nonlinear and non-stationary, therefore proposed a fault feature extraction method based on wavelet packet decomposition (WPD) and local mean decomposition (LMD) permutation entropy, which is based on the support vector machine (SVM) as the feature vector pattern recognition device Firstly, the wavelet packet analysis method is used to denoise the original vibration signal, and the frequency band division and signal reconstruction are carried out according to the characteristic frequency. Then the decomposition of the reconstructed signal is decomposed into a number of product functions (PE) by the local mean decomposition (LMD) , and the permutation entropy of the PF component which contains the main fault information is calculated to realize the feature quantization of the PF component. Finally, the entropy feature vector input multi-classification SVM, which is used to determine the type of fault and fault degree of bearing The experimental results show that the recognition rate of rolling bearing fault diagnosis is 95%. Comparing with other methods, the present this method can effectively extract the features of bearing fault and has a higher recognition accuracy展开更多
The power output state of photovoltaic power generation is affected by the earth’s rotation and solar radiation intensity.On the one hand,its output sequence has daily periodicity;on the other hand,it has discrete ra...The power output state of photovoltaic power generation is affected by the earth’s rotation and solar radiation intensity.On the one hand,its output sequence has daily periodicity;on the other hand,it has discrete randomness.With the development of new energy economy,the proportion of photovoltaic energy increased accordingly.In order to solve the problem of improving the energy conversion efficiency in the grid-connected optical network and ensure the stability of photovoltaic power generation,this paper proposes the short-termprediction of photovoltaic power generation based on the improvedmulti-scale permutation entropy,localmean decomposition and singular spectrum analysis algorithm.Firstly,taking the power output per unit day as the research object,the multi-scale permutation entropy is used to calculate the eigenvectors under different weather conditions,and the cluster analysis is used to reconstruct the historical power generation under typical weather rainy and snowy,sunny,abrupt,cloudy.Then,local mean decomposition(LMD)is used to decompose the output sequence,so as to extract more detail components of the reconstructed output sequence.Finally,combined with the weather forecast of the Meteorological Bureau for the next day,the singular spectrumanalysis algorithm is used to predict the photovoltaic classification of the recombination decomposition sequence under typical weather.Through the verification and analysis of examples,the hierarchical prediction experiments of reconstructed and non-reconstructed output sequences are compared.The results show that the algorithm proposed in this paper is effective in realizing the short-term prediction of photovoltaic generator,and has the advantages of simple structure and high prediction accuracy.展开更多
The superconductivity in (NbTa)<sub>1-X</sub>(HfZrTi)<sub>X</sub> high-entropy alloy is analyzed using the theory of strong-coupled superconductor. It is concluded that (NbTa)<sub>1-X<...The superconductivity in (NbTa)<sub>1-X</sub>(HfZrTi)<sub>X</sub> high-entropy alloy is analyzed using the theory of strong-coupled superconductor. It is concluded that (NbTa)<sub>1-X</sub>(HfZrTi)<sub>X </sub>is a strong coupled superconductor. The variation in the superconducting transition temperature from 7.9 K to 4.6 K as x increases from 0.2 to 0.84 arises because of the decrease in electronic band width due to localization and broadening of the band. It is suggested that the decrease in electronic band width is due to crystalline randomness which gives rise to the mobility edge.展开更多
文摘This paper introduces the localized Radon transform (LRT) into time-frequency distributions and presents the localized Radon-Wigner transform (LRWT). The definition of LRWT and a fast algorithm is derived, the properties of LRWT and its relationship with Radon-Wigner transform, Wigner distribution (WD), ambiguity function (AF), and generalized-marginal time-frequency distributions are analyzed.
文摘The use of time-frequency entropy to quantitatively assess the stability of submerged arc welding process considering the distribution features of arc energy is reported in this paper. Time-frequency entropy is employed to calculate and analyze the stationary current signals, non-stationary current and voltage signals in the submerged arc welding process. It is obtained that time-frequency entropy of arc signal can be used as arc stability judgment criteria of submerged arc welding. Experimental results are provided to confirm the effectiveness of this approach.
文摘The local wave method is a very good time-frequency method for nonstationaryvibration signal analysis. But the interfering noise has a big influence on the accuracy oftime-frequency analysis. The wavelet packet de-noising method can eliminate the interference ofnoise and improve the signal-noise-ratio. This paper uses the local wave method to decompose thede-noising signal and perform a time-frequency analysis. We can get better characteristics. Finally,an example of wavelet packet de-noising and a local wave time-frequency spectrum application ofdiesel engine surface vibration signal is put forward.
文摘A new method of fault analysis and detection by signal classification inrotating machines is presented. The Local Wave time-frequency spectrum which is a new method forprocessing a non-stationary signal is used to produce the representation of the signal. This methodallows the decomposition of one-dimensional signals into intrinsic mode functions (IMFs) usingempirical mode decomposition and the calculation of a meaningful multi-component instantaneousfrequency. Applied to fault signals , it provides new time-frequency attributes. Then the momentsand margins of the time-frequency spectrum are calculated as the feature vectors. The probabilisticneural network is used to classify different fault modes. The accuracy and robustness of theproposed methods is investigated on signals obtained during the different fault modes (early rub,loose, misalignment of the rotor).
基金Funded by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)under Germany’s Excellence Strategy EXC 2044-390685587Mathematics Münster:Dynamics-Geometry-Structure.Gregor Gassner is supported by the European Research Council(ERC)under the European Union’s Eights Framework Program Horizon 2020 with the research project Extreme,ERC Grant Agreement No.714487.
文摘Recently,it was discovered that the entropy-conserving/dissipative high-order split-form discontinuous Galerkin discretizations have robustness issues when trying to solve the sim-ple density wave propagation example for the compressible Euler equations.The issue is related to missing local linear stability,i.e.,the stability of the discretization towards per-turbations added to a stable base flow.This is strongly related to an anti-diffusion mech-anism,that is inherent in entropy-conserving two-point fluxes,which are a key ingredi-ent for the high-order discontinuous Galerkin extension.In this paper,we investigate if pressure equilibrium preservation is a remedy to these recently found local linear stability issues of entropy-conservative/dissipative high-order split-form discontinuous Galerkin methods for the compressible Euler equations.Pressure equilibrium preservation describes the property of a discretization to keep pressure and velocity constant for pure density wave propagation.We present the full theoretical derivation,analysis,and show corresponding numerical results to underline our findings.In addition,we characterize numerical fluxes for the Euler equations that are entropy-conservative,kinetic-energy-preserving,pressure-equilibrium-preserving,and have a density flux that does not depend on the pressure.The source code to reproduce all numerical experiments presented in this article is available online(https://doi.org/10.5281/zenodo.4054366).
基金This work was supported by The National Key Research and Development Program(No.2016YFC0600505 and 2018YFC0603701)National Natural Science Foundation(No.41974134 and 41774127).
文摘The Q-factor is an important physical parameter for characterizing the absorption and attenuation of seismic waves propagating in underground media,which is of great signifi cance for improving the resolution of seismic data,oil and gas detection,and reservoir description.In this paper,the local centroid frequency is defi ned using shaping regularization and used to estimate the Q values of the formation.We propose a continuous time-varying Q-estimation method in the time-frequency domain according to the local centroid frequency,namely,the local centroid frequency shift(LCFS)method.This method can reasonably reduce the calculation error caused by the low accuracy of the time picking of the target formation in the traditional methods.The theoretical and real seismic data processing results show that the time-varying Q values can be accurately estimated using the LCFS method.Compared with the traditional Q-estimation methods,this method does not need to extract the top and bottom interfaces of the target formation;it can also obtain relatively reasonable Q values when there is no eff ective frequency spectrum information.Simultaneously,a reasonable inverse Q fi ltering result can be obtained using the continuous time-varying Q values.
基金This work was supported by the National Natural Science Foundation of China(62071475,61890541,62171447).
文摘The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the target crosses the baseline is constructed.Then,the detection method of the for-ward-scatter signal based on the Rényi entropy of time-fre-quency distribution is proposed and the detection performance with different time-frequency distributions is compared.Simula-tion results show that the method based on the smooth pseudo Wigner-Ville distribution(SPWVD)can achieve the best perfor-mance.Next,combined with the geometry of FSR,the influence on detection performance of the relative distance between the target and the baseline is analyzed.Finally,the proposed method is validated by the anechoic chamber measurements and the results show that the detection ability has a 10 dB improvement compared with the common constant false alarm rate(CFAR)detection.
基金Projects(61571145,61405041)supported by the National Natural Science Foundation of ChinaProject(2014M551221)supported by the China Postdoctoral Science Foundation,China+3 种基金Project(LBH-Z13057)supported by the Heilongjiang Postdoctoral Science Found,ChinaProject(ZD201216)supported by the Key Program of Heilongjiang Natural Science Foundation,ChinaProject(RC2013XK009003)supported by the Program of Excellent Academic Leaders of Harbin,ChinaProject(HEUCF1508)supported by the Fundamental Research Funds for the Central Universities,China
文摘A variation pixels identification method was proposed aiming at depressing the effect of variation pixels, which dilates the theoretical hyperspectral data simplex and misguides volume evaluation of the simplex. With integration of both spatial and spectral information, this method quantitatively defines a variation index for every pixel. The variation index is proportional to pixels local entropy but inversely proportional to pixels kernel spatial attraction. The number of pixels removed was modulated by an artificial threshold factor α. Two real hyperspectral data sets were employed to examine the endmember extraction results. The reconstruction errors of preprocessing data as opposed to the result of original data were compared. The experimental results show that the number of distinct endmembers extracted has increased and the reconstruction error is greatly reduced. 100% is an optional value for the threshold factor α when dealing with no prior knowledge hyperspectral data.
基金supported by the National Natural Science Foundation of China (61171194)
文摘This paper presents a method for detecting the small infrared target under complex background. An algorithm, named local mutation weighted information entropy (LMWIE), is proposed to suppress background. Then, the grey value of targets is enhanced by calculating the local energy. Image segmentation based on the adaptive threshold is used to solve the problems that the grey value of noise is enhanced with the grey value improvement of targets. Experimental results show that compared with the adaptive Butterworth high-pass filter method, the proposed algorithm is more effective and faster for the infrared small target detection.
文摘To diagnosethe reciprocating mechanical fault.We utilizedlocal waveti me-frequency approach.Firstly,we gave the principle.Secondly,the application of local wave ti me-frequency was given.Finally,we discusseditsvirtue in reciprocating mechanical fault diagnosis.
基金supported by the National Natural Science Foundation of China(51375405)Independent Project of the State Key Laboratory of Traction Power(2016TP-10)
文摘Bearing fault signal is nonlinear and non-stationary, therefore proposed a fault feature extraction method based on wavelet packet decomposition (WPD) and local mean decomposition (LMD) permutation entropy, which is based on the support vector machine (SVM) as the feature vector pattern recognition device Firstly, the wavelet packet analysis method is used to denoise the original vibration signal, and the frequency band division and signal reconstruction are carried out according to the characteristic frequency. Then the decomposition of the reconstructed signal is decomposed into a number of product functions (PE) by the local mean decomposition (LMD) , and the permutation entropy of the PF component which contains the main fault information is calculated to realize the feature quantization of the PF component. Finally, the entropy feature vector input multi-classification SVM, which is used to determine the type of fault and fault degree of bearing The experimental results show that the recognition rate of rolling bearing fault diagnosis is 95%. Comparing with other methods, the present this method can effectively extract the features of bearing fault and has a higher recognition accuracy
文摘The power output state of photovoltaic power generation is affected by the earth’s rotation and solar radiation intensity.On the one hand,its output sequence has daily periodicity;on the other hand,it has discrete randomness.With the development of new energy economy,the proportion of photovoltaic energy increased accordingly.In order to solve the problem of improving the energy conversion efficiency in the grid-connected optical network and ensure the stability of photovoltaic power generation,this paper proposes the short-termprediction of photovoltaic power generation based on the improvedmulti-scale permutation entropy,localmean decomposition and singular spectrum analysis algorithm.Firstly,taking the power output per unit day as the research object,the multi-scale permutation entropy is used to calculate the eigenvectors under different weather conditions,and the cluster analysis is used to reconstruct the historical power generation under typical weather rainy and snowy,sunny,abrupt,cloudy.Then,local mean decomposition(LMD)is used to decompose the output sequence,so as to extract more detail components of the reconstructed output sequence.Finally,combined with the weather forecast of the Meteorological Bureau for the next day,the singular spectrumanalysis algorithm is used to predict the photovoltaic classification of the recombination decomposition sequence under typical weather.Through the verification and analysis of examples,the hierarchical prediction experiments of reconstructed and non-reconstructed output sequences are compared.The results show that the algorithm proposed in this paper is effective in realizing the short-term prediction of photovoltaic generator,and has the advantages of simple structure and high prediction accuracy.
文摘The superconductivity in (NbTa)<sub>1-X</sub>(HfZrTi)<sub>X</sub> high-entropy alloy is analyzed using the theory of strong-coupled superconductor. It is concluded that (NbTa)<sub>1-X</sub>(HfZrTi)<sub>X </sub>is a strong coupled superconductor. The variation in the superconducting transition temperature from 7.9 K to 4.6 K as x increases from 0.2 to 0.84 arises because of the decrease in electronic band width due to localization and broadening of the band. It is suggested that the decrease in electronic band width is due to crystalline randomness which gives rise to the mobility edge.