期刊文献+
共找到2,878篇文章
< 1 2 144 >
每页显示 20 50 100
Research on a non-linear chaotic prediction model for urban traffic flow 被引量:4
1
作者 黄鵾 陈森发 +1 位作者 周振国 亓霞 《Journal of Southeast University(English Edition)》 EI CAS 2003年第4期410-413,共4页
In order to solve serious urban transport problems, according to the proved chaotic characteristic of traffic flow, a non linear chaotic model to analyze the time series of traffic flow is proposed. This model recons... In order to solve serious urban transport problems, according to the proved chaotic characteristic of traffic flow, a non linear chaotic model to analyze the time series of traffic flow is proposed. This model reconstructs the time series of traffic flow in the phase space firstly, and the correlative information in the traffic flow is extracted richly, on the basis of it, a predicted equation for the reconstructed information is established by using chaotic theory, and for the purpose of obtaining the optimal predicted results, recognition and optimization to the model parameters are done by using genetic algorithm. Practical prediction research of urban traffic flow shows that this model has famous predicted precision, and it can provide exact reference for urban traffic programming and control. 展开更多
关键词 traffic flow chaotic theory phase reconstruction non linear genetic algorithm prediction model
下载PDF
The improved local linear prediction of chaotic time series 被引量:2
2
作者 孟庆芳 彭玉华 孙佳 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第11期3220-3225,共6页
Based on the Bayesian information criterion, this paper proposes the improved local linear prediction method to predict chaotic time series. This method uses spatial correlation and temporal correlation simultaneously... Based on the Bayesian information criterion, this paper proposes the improved local linear prediction method to predict chaotic time series. This method uses spatial correlation and temporal correlation simultaneously. Simulation results show that the improved local linear prediction method can effectively make multi-step and one-step prediction of chaotic time series and the multi-step prediction performance and one-step prediction accuracy of the improved local linear prediction method are superior to those of the traditional local linear prediction method. 展开更多
关键词 local linear prediction Bayesian information criterion state space reconstruction chaotic time series
下载PDF
An adaptive strategy based on linear prediction of queue length to minimize congestion in Barabási-Albert scale-free networks 被引量:1
3
作者 沈毅 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第5期632-636,共5页
In this paper, we propose an adaptive strategy based on the linear prediction of queue length to minimize congestion in Barabaisi-Albert (BA) scale-free networks. This strategy uses local knowledge of traffic condit... In this paper, we propose an adaptive strategy based on the linear prediction of queue length to minimize congestion in Barabaisi-Albert (BA) scale-free networks. This strategy uses local knowledge of traffic conditions and allows nodes to be able to self-coordinate their accepting probability to the incoming packets. We show that the strategy can delay remarkably the onset of congestion and systems avoiding the congestion can benefit from hierarchical organization of accepting rates of nodes. Furthermore, with the increase of prediction orders, we achieve larger values for the critical load together with a smooth transition from free-flow to congestion. 展开更多
关键词 linear prediction CONGESTION NETWORKS
下载PDF
Prediction and driving factors of forest fire occurrence in Jilin Province,China
4
作者 Bo Gao Yanlong Shan +4 位作者 Xiangyu Liu Sainan Yin Bo Yu Chenxi Cui Lili Cao 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第1期58-71,共14页
Forest fires are natural disasters that can occur suddenly and can be very damaging,burning thousands of square kilometers.Prevention is better than suppression and prediction models of forest fire occurrence have dev... Forest fires are natural disasters that can occur suddenly and can be very damaging,burning thousands of square kilometers.Prevention is better than suppression and prediction models of forest fire occurrence have developed from the logistic regression model,the geographical weighted logistic regression model,the Lasso regression model,the random forest model,and the support vector machine model based on historical forest fire data from 2000 to 2019 in Jilin Province.The models,along with a distribution map are presented in this paper to provide a theoretical basis for forest fire management in this area.Existing studies show that the prediction accuracies of the two machine learning models are higher than those of the three generalized linear regression models.The accuracies of the random forest model,the support vector machine model,geographical weighted logistic regression model,the Lasso regression model,and logistic model were 88.7%,87.7%,86.0%,85.0%and 84.6%,respectively.Weather is the main factor affecting forest fires,while the impacts of topography factors,human and social-economic factors on fire occurrence were similar. 展开更多
关键词 Forest fire Occurrence prediction Forest fire driving factors Generalized linear regression models Machine learning models
下载PDF
Regression analysis and its application to oil and gas exploration:A case study of hydrocarbon loss recovery and porosity prediction,China
5
作者 Yang Li Xiaoguang Li +3 位作者 Mingyu Guo Chang Chen Pengbo Ni Zijian Huang 《Energy Geoscience》 EI 2024年第4期240-252,共13页
In oil and gas exploration,elucidating the complex interdependencies among geological variables is paramount.Our study introduces the application of sophisticated regression analysis method at the forefront,aiming not... In oil and gas exploration,elucidating the complex interdependencies among geological variables is paramount.Our study introduces the application of sophisticated regression analysis method at the forefront,aiming not just at predicting geophysical logging curve values but also innovatively mitigate hydrocarbon depletion observed in geochemical logging.Through a rigorous assessment,we explore the efficacy of eight regression models,bifurcated into linear and nonlinear groups,to accommodate the multifaceted nature of geological datasets.Our linear model suite encompasses the Standard Equation,Ridge Regression,Least Absolute Shrinkage and Selection Operator,and Elastic Net,each presenting distinct advantages.The Standard Equation serves as a foundational benchmark,whereas Ridge Regression implements penalty terms to counteract overfitting,thus bolstering model robustness in the presence of multicollinearity.The Least Absolute Shrinkage and Selection Operator for variable selection functions to streamline models,enhancing their interpretability,while Elastic Net amalgamates the merits of Ridge Regression and Least Absolute Shrinkage and Selection Operator,offering a harmonized solution to model complexity and comprehensibility.On the nonlinear front,Gradient Descent,Kernel Ridge Regression,Support Vector Regression,and Piecewise Function-Fitting methods introduce innovative approaches.Gradient Descent assures computational efficiency in optimizing solutions,Kernel Ridge Regression leverages the kernel trick to navigate nonlinear patterns,and Support Vector Regression is proficient in forecasting extremities,pivotal for exploration risk assessment.The Piecewise Function-Fitting approach,tailored for geological data,facilitates adaptable modeling of variable interrelations,accommodating abrupt data trend shifts.Our analysis identifies Ridge Regression,particularly when augmented by Piecewise Function-Fitting,as superior in recouping hydrocarbon losses,and underscoring its utility in resource quantification refinement.Meanwhile,Kernel Ridge Regression emerges as a noteworthy strategy in ameliorating porosity-logging curve prediction for well A,evidencing its aptness for intricate geological structures.This research attests to the scientific ascendancy and broad-spectrum relevance of these regression techniques over conventional methods while heralding new horizons for their deployment in the oil and gas sector.The insights garnered from these advanced modeling strategies are set to transform geological and engineering practices in hydrocarbon prediction,evaluation,and recovery. 展开更多
关键词 Regression analysis Oil and gas exploration Multiple linear regression model Nonlinear regression model Hydrocarbon loss recovery Porosity prediction
下载PDF
The Study of Contact Pressure Analyses and Prediction of Dynamic Fatigue Life for Linear Guideways System 被引量:1
6
作者 Thin-Lin Horng 《Modern Mechanical Engineering》 2013年第2期69-76,共8页
The application of the linear guideways is very extensive, such as automation equipment, heavy-duty carry equipment, heavy-cut machining tool, CNC grinding machine, large-scale planning machine and machining center wi... The application of the linear guideways is very extensive, such as automation equipment, heavy-duty carry equipment, heavy-cut machining tool, CNC grinding machine, large-scale planning machine and machining center with the demand of high rigidity and heavy load. By means of the study of contact behavior between the roller/guideway and roller/slider, roller type linear guideways can improve the machining accuracy. The goal of this paper is to construct the fatigue life model of the linear guideway, with the help of the contact mechanics of rollers. In beginning, the analyses of the rigidity of a single roller compressed between guideway and slider was conducted. Then, the normal contact pressure of linear guideways was obtained by using the superposition method, and verified by the FEM software (ANSYS workbench). Finally, the bearing life theory proposed by Lundberg and Palmgren was used to describe the contact fatigue life. 展开更多
关键词 linear ROLLER Guideways SYSTEM Analysis SYSTEM Stress ANALYSES prediction of FATIGUE Life
下载PDF
LINEAR PREDICTION APPROACH IN AIRBORNE ADAPTIVE ARRAYS
7
作者 Su Jie Li Chunsheng Zhou Yinqing(Department of Electronic Engineering, Beijing University of Aeronautics and Astronautics, Beijing, China, 100083) 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1996年第1期64-70,共7页
To cope with the time-varying and Dopper-broadened clutter in airborne phase array radars, it is required that the signal processing should be adaptive and two-dimensional both in time and in space. However, the optim... To cope with the time-varying and Dopper-broadened clutter in airborne phase array radars, it is required that the signal processing should be adaptive and two-dimensional both in time and in space. However, the optimum two-dimensional adaptive processing is hard to realize real-timely because it requires a large amount of computation. From the idea of approximating the clutter process by using an auto regressive process, a linear prediction approach is proposed to realize the adaptive space-time processing of airborne adaptive array signals. The research shows that the clutter process can be well approximated by a low-order AR process, so a low-order linear prediction receiver can get a sub-optimum performance at a very low expense. Besides, the low-order linear prediction receiver has additional degrees of freedom to cope with other colored noises and interferences. In consideration of the many advantages of the linear prediction receiver in both algorithms and realizations, it has a good prospect in its application to air borne adaptive array signal processing. 展开更多
关键词 signal processing phased arrays RADAR linear prediction adaptive filters
下载PDF
KLT-based local linear prediction of chaotic time series
8
作者 Meng Qingfang Peng Yuhua Chen Yuehui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第4期694-699,共6页
In the reconstructed phase space, based on the Karhunen-Loeve transformation (KLT), the new local linear prediction method is proposed to predict chaotic time series. & noise-free chaotic time series and a noise ad... In the reconstructed phase space, based on the Karhunen-Loeve transformation (KLT), the new local linear prediction method is proposed to predict chaotic time series. & noise-free chaotic time series and a noise added chaotic time series are analyzed. The simulation results show that the KLT-based local linear prediction method can effectively make one-step and multi-step prediction for chaotic time series, and the one-step and multi-step prediction accuracies of the KLT-based local linear prediction method are superior to that of the traditional local linear prediction. 展开更多
关键词 Karhunen-Loeve transformation local linear prediction phase space reconstruction chaotic time series.
下载PDF
Pyramid Linear Prediction Coding for Images
9
作者 朱广进 赵风光 江峰 《Advances in Manufacturing》 SCIE CAS 1997年第2期155-158,共4页
Motivated by wavelet transform, this paper presents a pyramid linear prediction coding (PLPC) algorithmfor digitial images.The algorithm otltpots the rough colltour of an image and a prediction ermr sequence. In contr... Motivated by wavelet transform, this paper presents a pyramid linear prediction coding (PLPC) algorithmfor digitial images.The algorithm otltpots the rough colltour of an image and a prediction ermr sequence. In contrastto the conventional linear prediction method, PLPC exhibits very little sensitivity to channel ermrs and provides amore efficient compression performance. The results of simulations with Lena 512 X 512 and bitrates ranging from0.17 to 3.2 (lossless)bits/pixel are given to show that the PLPC method is very suitable for the human visualperception. 展开更多
关键词 linear prediction wavelet transform image compression
下载PDF
ASP-Based Programs of Best Linear Unbiased Prediction-Estimated Breeding Values in Breeding Stock
10
作者 FAN Qiang TIAN Chang-yong YU Mei-zi 《Animal Husbandry and Feed Science》 CAS 2010年第10期4-6,16,共4页
In order to improve the breeding effect of livestock, the data were read from an Excel file with Active Server Page (ASP) programs, and the breeding values of breeding stock were calculated by best linear unbiased p... In order to improve the breeding effect of livestock, the data were read from an Excel file with Active Server Page (ASP) programs, and the breeding values of breeding stock were calculated by best linear unbiased prediction (BLUP) method. 展开更多
关键词 Best linear unbiased prediction Active Server Paget Excel Breeding stock Breeding value
下载PDF
Estimators of Linear Regression Model and Prediction under Some Assumptions Violation
11
作者 Kayode Ayinde Emmanuel O. Apata Oluwayemisi O. Alaba 《Open Journal of Statistics》 2012年第5期534-546,共13页
The development of many estimators of parameters of linear regression model is traceable to non-validity of the assumptions under which the model is formulated, especially when applied to real life situation. This not... The development of many estimators of parameters of linear regression model is traceable to non-validity of the assumptions under which the model is formulated, especially when applied to real life situation. This notwithstanding, regression analysis may aim at prediction. Consequently, this paper examines the performances of the Ordinary Least Square (OLS) estimator, Cochrane-Orcutt (COR) estimator, Maximum Likelihood (ML) estimator and the estimators based on Principal Component (PC) analysis in prediction of linear regression model under the joint violations of the assumption of non-stochastic regressors, independent regressors and error terms. With correlated stochastic normal variables as regressors and autocorrelated error terms, Monte-Carlo experiments were conducted and the study further identifies the best estimator that can be used for prediction purpose by adopting the goodness of fit statistics of the estimators. From the results, it is observed that the performances of COR at each level of correlation (multicollinearity) and that of ML, especially when the sample size is large, over the levels of autocorrelation have a convex-like pattern while that of OLS and PC are concave-like. Also, as the levels of multicollinearity increase, the estimators, except the PC estimators when multicollinearity is negative, rapidly perform better over the levels autocorrelation. The COR and ML estimators are generally best for prediction in the presence of multicollinearity and autocorrelated error terms. However, at low levels of autocorrelation, the OLS estimator is either best or competes consistently with the best estimator, while the PC estimator is either best or competes with the best when multicollinearity level is high(λ>0.8 or λ-0.49). 展开更多
关键词 prediction ESTIMATORS linear Regression Model Autocorrelated Error TERMS CORRELATED Stochastic NORMAL Regressors
下载PDF
Blind Adaptive MMSE Equalization of Underwater Acoustic Channels Based on the Linear Prediction Method
12
作者 张银兵 赵俊渭 +1 位作者 郭业才 李金明 《Journal of Marine Science and Application》 2011年第1期113-120,共8页
The problem of blind adaptive equalization of underwater single-input multiple-output (SIMO) acoustic channels was analyzed by using the linear prediction method.Minimum mean square error (MMSE) blind equalizers with ... The problem of blind adaptive equalization of underwater single-input multiple-output (SIMO) acoustic channels was analyzed by using the linear prediction method.Minimum mean square error (MMSE) blind equalizers with arbitrary delay were described on a basis of channel identification.Two methods for calculating linear MMSE equalizers were proposed.One was based on full channel identification and realized using RLS adaptive algorithms,and the other was based on the zero-delay MMSE equalizer and realized using LMS and RLS adaptive algorithms,respectively.Performance of the three proposed algorithms and comparison with two existing zero-forcing (ZF) equalization algorithms were investigated by simulations utilizing two underwater acoustic channels.The results show that the proposed algorithms are robust enough to channel order mismatch.They have almost the same performance as the corresponding ZF algorithms under a high signal-to-noise (SNR) ratio and better performance under a low SNR. 展开更多
关键词 linear prediction blind equalization channel identification second order statistics MMSE
下载PDF
Linear extrapolation for prediction of tensile creep compliance of polyvinyl chloride
13
作者 谢刚 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第5期587-589,共3页
The universal creep equation is successful in relating the creep (ε) to the aging time (t) , coefficient of retardation time (β) , and intrinsic time ( to ). This relation was used to treat the creep experim... The universal creep equation is successful in relating the creep (ε) to the aging time (t) , coefficient of retardation time (β) , and intrinsic time ( to ). This relation was used to treat the creep experimental data for polyvinyl chloride ( PVC ) specimens at a given stress and different aging times. The βgs found by the “polynomial fitting” method in this work instead of the “middle - point” method reported in the literature. The unified master line was constructed with the treated data and curves according to the universal equation. The master line can be used to predict the long- term creed behavior and lifetime by extrapolating. 展开更多
关键词 linear extrapolation prediction tensile creep compliance polyvinyl chloride PVC
下载PDF
Nonlinearly correlated failure analysis and autonomic prediction for distributed systems
14
作者 Lu Xu Wang Huiqiang +2 位作者 Lv Xiao Feng Guangsheng Zhou Renjie 《High Technology Letters》 EI CAS 2011年第3期290-298,共9页
In order to achieve failure prediction without manual intervention for distributed systems, a novel failure feature analysis and extraction approach to automate failure prediction is proposed. Compared with the tradit... In order to achieve failure prediction without manual intervention for distributed systems, a novel failure feature analysis and extraction approach to automate failure prediction is proposed. Compared with the traditional methods which focus on building heuristic rules or models, the autonomic prediction approach analyzes the nonlinear correlation of failure features by recognizing failure patterns. Failure data are sorted according to the nonlinear correlation and failure signature is proposed for autonomic prediction. In addition, the Manifold Learning algorithm named supervised locally linear embedding is applied to achieve feature extraction. Based on the runtime monitoring of failure metrics, the experimental results indicate that the proposed method has better performance in terms of both correlation recognition precision and feature extraction quality and thus it can be used to design efficient autonomic failure prediction for distributed systems. 展开更多
关键词 failure prediction nonlinear correlation analysis feature extraction locally linear embedding autonomic computing
下载PDF
Development of a Quantitative Prediction Support System Using the Linear Regression Method
15
作者 Jeremie Ndikumagenge Vercus Ntirandekura 《Journal of Applied Mathematics and Physics》 2023年第2期421-427,共7页
The development of prediction supports is a critical step in information systems engineering in this era defined by the knowledge economy, the hub of which is big data. Currently, the lack of a predictive model, wheth... The development of prediction supports is a critical step in information systems engineering in this era defined by the knowledge economy, the hub of which is big data. Currently, the lack of a predictive model, whether qualitative or quantitative, depending on a company’s areas of intervention can handicap or weaken its competitive capacities, endangering its survival. In terms of quantitative prediction, depending on the efficacy criteria, a variety of methods and/or tools are available. The multiple linear regression method is one of the methods used for this purpose. A linear regression model is a regression model of an explained variable on one or more explanatory variables in which the function that links the explanatory variables to the explained variable has linear parameters. The purpose of this work is to demonstrate how to use multiple linear regressions, which is one aspect of decisional mathematics. The use of multiple linear regressions on random data, which can be replaced by real data collected by or from organizations, provides decision makers with reliable data knowledge. As a result, machine learning methods can provide decision makers with relevant and trustworthy data. The main goal of this article is therefore to define the objective function on which the influencing factors for its optimization will be defined using the linear regression method. 展开更多
关键词 prediction linear Regression Machine Learning Least Squares Method
下载PDF
AN IMPROVED 2.4kb/s MIXED EXCITATION LINEAR PREDICTION VOCODER
16
作者 MaXin LiWenyuan LiuChangshu ZhangYuzhong 《Journal of Electronics(China)》 2005年第4期431-436,共6页
This letter presents two improvements on 2.4 kb/s Mixed-Excitation Linear Prediction (MELP) vocoder. The one is a new parameter Redzc named energy to differential zerocrossing rate which is used in adaptation of V/UV ... This letter presents two improvements on 2.4 kb/s Mixed-Excitation Linear Prediction (MELP) vocoder. The one is a new parameter Redzc named energy to differential zerocrossing rate which is used in adaptation of V/UV decision of transitional segments and low energy level speech segments. The other is a multi-path searching method for Multi-Stage Vector Quantization (MSVQ) of line spectral frequency. Subjective tests show that the intelligiblity and naturallity of improved MELP vocoder are preferable to those of the original one. 展开更多
关键词 Mixed-Excitation linear prediction (MELP) VOCODER Multi-Stage Vector Search (MSVQ) V/UV decision
下载PDF
A Study on Simple Prediction Method of Heat Load: A Use of Linear Approximation Indicial Response in Basements
17
作者 Kyung-Soon Park Hiroaki Kitano Hisaya Nagai 《Journal of Civil Engineering and Architecture》 2013年第4期379-387,共9页
This study was conducted to establish a predictable method for a heat load of an underground structure with sufficient accuracy. As the first step, our previous paper reported the measurement results of field experime... This study was conducted to establish a predictable method for a heat load of an underground structure with sufficient accuracy. As the first step, our previous paper reported the measurement results of field experiments on an underground experimental basement under internal heat generation conditions. Also, it presented the results of numerical analyses on the heat and moisture behavior and the influence of internal heat generation of the experimental basement and ground. However, it is practically impossible to utilize the model of simultaneous heat and moisture transfer at the design phase because the prediction by the model of simultaneous heat and moisture transfer requires a long calculation time. In this paper, the authors present the simple load calculation technique, using a linearized approximation indicial response of the inner surface heat flux in a basement to outdoor air temperature change. In addition, the approximation indicial responses for each part of the single-walled concrete drawn using this technique are arranged. The heat load calculation example of application to the basement of the optional size by this technique is shown. 展开更多
关键词 Underground structure simultaneous heat and moisture transfer linearized prediction method indicial response.
下载PDF
Analysis of radar fault prediction based on combined model 被引量:1
18
作者 邵延君 马春茂 潘宏侠 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2016年第1期44-47,共4页
Based on modeling principle of GM(1,1)model and linear regression model,a combined prediction model is established to predict equipment fault by the fitting of two models.The new prediction model takes full advantag... Based on modeling principle of GM(1,1)model and linear regression model,a combined prediction model is established to predict equipment fault by the fitting of two models.The new prediction model takes full advantage of prediction information provided by the two models and improves the prediction precision.Finally,this model is introduced to predict the system fault time according to the output voltages of a certain type of radar transmitter. 展开更多
关键词 grey linear regression model filtting radar fault prediction
下载PDF
Environmental factors influencing snowfall and snowfall prediction in the Tianshan Mountains, Northwest China 被引量:9
19
作者 ZHANG Xueting LI Xuemei +2 位作者 LI Lanhai ZHANG Shan QIN Qirui 《Journal of Arid Land》 SCIE CSCD 2019年第1期15-28,共14页
Snowfall is one of the dominant water resources in the mountainous regions and is closely related to the development of the local ecosystem and economy. Snowfall predication plays a critical role in understanding hydr... Snowfall is one of the dominant water resources in the mountainous regions and is closely related to the development of the local ecosystem and economy. Snowfall predication plays a critical role in understanding hydrological processes and forecasting natural disasters in the Tianshan Mountains, where meteorological stations are limited. Based on climatic, geographical and topographic variables at 27 meteorological stations during the cold season(October to April) from 1980 to 2015 in the Tianshan Mountains located in Xinjiang of Northwest China, we explored the potential influence of these variables on snowfall and predicted snowfall using two methods: multiple linear regression(MLR) model(a conventional measuring method) and random forest(RF) model(a non-parametric and non-linear machine learning algorithm). We identified the primary influencing factors of snowfall by ranking the importance of eight selected predictor variables based on the relative contribution of each variable in the two models. Model simulations were compared using different performance indices and the results showed that the RF model performed better than the MLR model, with a much higher R^2 value(R^2=0.74; R^2, coefficient of determination) and a lower bias error(RSR=0.51; RSR, the ratio of root mean square error to standard deviation of observed dataset). This indicates that the non-linear trend is more applicable for explaining the relationship between the selected predictor variables and snowfall. Relative humidity, temperature and longitude were identified as three of the most important variables influencing snowfall and snowfall prediction in both models, while elevation, aspect and latitude were of secondary importance, followed by slope and wind speed. These results will be beneficial to understand hydrological modeling and improve management and prediction of water resources in the Tianshan Mountains. 展开更多
关键词 SNOWFALL prediction SNOWFALL fraction random forest multiple linear regression predictor variables TIANSHAN Mountains
下载PDF
Adaptive nonlinear model predictive control design of a flexible-link manipulator with uncertain parameters 被引量:7
20
作者 Fabian Schnelle Peter Eberhard 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第3期529-542,共14页
This paper presents a novel adaptive nonlinear model predictive control design for trajectory tracking of flexible-link manipulators consisting of feedback linearization, linear model predictive control, and unscented... This paper presents a novel adaptive nonlinear model predictive control design for trajectory tracking of flexible-link manipulators consisting of feedback linearization, linear model predictive control, and unscented Kalman filtering. Reducing the nonlinear system to a linear system by feedback linearization simplifies the optimization problem of the model predictive controller significantly, which, however, is no longer linear in the presence of parameter uncertainties and can potentially lead to an undesired dynamical behaviour. An unscented Kalman filter is used to approximate the dynamics of the prediction model by an online parameter estimation, which leads to an adaptation of the optimization problem in each time step and thus to a better prediction and an improved input action. Finally, a detailed fuzzy-arithmetic analysis is performed in order to quantify the effect of the uncertainties on the control structure and to derive robustness assessments. The control structure is applied to a serial manipulator with two flexible links containing uncertain model parameters and acting in three-dimensional space. 展开更多
关键词 Model predictive control Feedback linearization Unscented Kalman filter Flexible-link manipulator Fuzzy-arithmetical analysis
下载PDF
上一页 1 2 144 下一页 到第
使用帮助 返回顶部