In some real complex networks, only a few nodes can obtain the global information about the entire networks, but most of the nodes own only local connections therefore own only local information of the networks. A new...In some real complex networks, only a few nodes can obtain the global information about the entire networks, but most of the nodes own only local connections therefore own only local information of the networks. A new local-world evolving network model is proposed in this paper. In the model, not all the nodes obtain local network information, which is different from the local world network model proposed by Li and Chen (LC model). In the LC model, each node has only the local connections therefore owns only local information about the entire networks. Theoretical analysis and numerical simulation show that adjusting the ratio of the number of nodes obtaining the global information of the network to the total number of nodes can effectively control the valuing range for the power-law exponent of the new network. Therefore, if the topological structure of a complex network, especially its exponent of power-law degree distribution, needs controlling, we just add or take away a few nodes which own the global information of the network.展开更多
The bipartite graph structure exists in the connections of many objects in the real world, and the evolving modeling is a good method to describe and understand the generation and evolution within various real complex...The bipartite graph structure exists in the connections of many objects in the real world, and the evolving modeling is a good method to describe and understand the generation and evolution within various real complex networks. Previous bipartite models were proposed to mostly explain the principle of attachments, and ignored the diverse growth speed of nodes of sets in different bipartite networks. In this paper, we propose an evolving bipartite network model with adjustable node scale and hybrid attachment mechanisms, which uses different probability parameters to control the scale of two disjoint sets of nodes and the preference strength of hybrid attachment respectively. The results show that the degree distribution of single set in the proposed model follows a shifted power-law distribution when parameter r and s are not equal to 0, or exponential distribution when r or s is equal to 0. Furthermore, we extend the previous model to a semi-bipartite network model, which embeds more user association information into the internal network, so that the model is capable of carrying and revealing more deep information of each user in the network. The simulation results of two models are in good agreement with the empirical data, which verifies that the models have a good performance on real networks from the perspective of degree distribution. We believe these two models are valuable for an explanation of the origin and growth of bipartite systems that truly exist.展开更多
Complex hypernetworks are ubiquitous in the real system. It is very important to investigate the evolution mecha- nisms. In this paper, we present a local-world evolving hypernetwork model by taking into account the h...Complex hypernetworks are ubiquitous in the real system. It is very important to investigate the evolution mecha- nisms. In this paper, we present a local-world evolving hypernetwork model by taking into account the hyperedge growth and local-world hyperedge preferential attachment mechanisms. At each time step, a newly added hyperedge encircles a new coming node and a number of nodes from a randomly selected local world. The number of the selected nodes from the local world obeys the uniform distribution and its mean value is m. The analytical and simulation results show that the hyperdegree approximately obeys the power-law form and the exponent of hyperdegree distribution is 7 = 2 + 1/m. Furthermore, we numerically investigate the node degree, hyperedge degree, clustering coefficient, as well as the average distance, and find that the hypemetwork model shares the scale-flee and small-world properties, which shed some light for deeply understanding the evolution mechanism of the real systems.展开更多
To accurately describe the evolving features of Mobile Ad Hoc Networks (MANETs) and to improve the performance of such networks, an evolving topology model with local-area preference is proposed. The aim of the model,...To accurately describe the evolving features of Mobile Ad Hoc Networks (MANETs) and to improve the performance of such networks, an evolving topology model with local-area preference is proposed. The aim of the model, which is analyzed by the mean field theory, is to optimize network structures based on users' behaviors in MANETs. The analysis results indicate that the network generated by this evolving model is a kind of scale-free network. This evolving model can improve the fault-tolerance performance of networks by balancing the connectivity and two factors, i.e., the remaining energy and the distance to nodes. The simulation results show that the evolving topology model has superior performance in reducing the traffic load and the energy consumption, prolonging network lifetime and improving the scalability of networks. It is an available approach for establishing and analyzing actual MANETs.展开更多
To describe the empirical data of collaboration networks, several evolving mechanisms have been proposed, which usually introduce different dynamics factors controlling the network growth. These models can reasonably ...To describe the empirical data of collaboration networks, several evolving mechanisms have been proposed, which usually introduce different dynamics factors controlling the network growth. These models can reasonably reproduce the empirical degree distributions for a number of we11-studied real-world collaboration networks. On the basis of the previous studies, in this work we propose a collaboration network model in which the network growth is simultaneously controlled by three factors, including partial preferential attachment, partial random attachment and network growth speed. By using a rate equation method, we obtain an analytical formula for the act degree distribution. We discuss the dependence of the act degree distribution on these different dynamics factors. By fitting to the empirical data of two typical collaboration networks, we can extract the respective contributions of these dynamics factors to the evolution of each networks.展开更多
A multi-local-world model is introduced to describe the evolving networks that have a localization property such as the Internet. Based on this model, we show that the traffic load defined by 'betweenness centrali...A multi-local-world model is introduced to describe the evolving networks that have a localization property such as the Internet. Based on this model, we show that the traffic load defined by 'betweenness centrality' on the multi-local-world scale-free networks' model also follows a power law form. In this kind of network, a few vertices have heavier loads and so play more important roles than the others in the network.展开更多
To search for the Design Patterns’ influence on the software, the paper abstracts the feature models of 9 kinds of classic exiting design patterns among the 23 kinds and describes the features with algorithm language...To search for the Design Patterns’ influence on the software, the paper abstracts the feature models of 9 kinds of classic exiting design patterns among the 23 kinds and describes the features with algorithm language. Meanwhile, searching for the specific structure features in the network, the paper designs 9 matching algorithms of the 9 kinds design patterns mentioned above to research on the structure of the design patterns in the software network. At last, the paper analyzes the evolving trends of the software scale and the application frequency of the 9 kinds of design patterns as the software evolves, and search for the rules how these design patterns are applied into 4 kinds of typical software.展开更多
An improved susceptible-infected-susceptible(SIS)model in the local-world evolving network model is presented to study the epidemic spreading behavior with time delay,which is added into the infected phase.The local-w...An improved susceptible-infected-susceptible(SIS)model in the local-world evolving network model is presented to study the epidemic spreading behavior with time delay,which is added into the infected phase.The local-world evolving model displays a transition from the exponential network to the scale-free network with respect to the degree distribution.Two typical delay regimes,i.e.,uniform and degree-dependent delays are incorporated into the SIS epidemic model to investigate the epidemic infection processes in the local-world net-work model.The results indicate that the infection delay will promote the epidemic outbreaks,increase the prevalence and reduce the critical threshold of epidemic spreading.It is also found that local-world size M will considerably influence the epidemic spreading behavior with time delay in the local-world network through large-scale numerical simulations.Simulation results are also of relevance to fight epidemic outbreaks.展开更多
In order to reveal the intrinsic properties of scientific collaboration networks, a new local-world evolution model on a scientific collaboration network is proposed by analysing the network growth mechanism. The act ...In order to reveal the intrinsic properties of scientific collaboration networks, a new local-world evolution model on a scientific collaboration network is proposed by analysing the network growth mechanism. The act degree as the measurement of preferential attachment is taken, and the local-world information of nodes is taken into account. Analysis and simulation show that the node degree and the node strength obey the power-law distribution. Low average path length and high clustering coefficient are approved. Experiment indicates that the model can depict efficiently the topological structure and statistical characteristics of real-life scientific collaboration networks.展开更多
基金supported by the Scientific Research Starting Foundation of Hangzhou Dianzi University (Grant No KYS091507073)partly by the National High Technology Research and Development Program of China (Grant No 2005AA147030)
文摘In some real complex networks, only a few nodes can obtain the global information about the entire networks, but most of the nodes own only local connections therefore own only local information of the networks. A new local-world evolving network model is proposed in this paper. In the model, not all the nodes obtain local network information, which is different from the local world network model proposed by Li and Chen (LC model). In the LC model, each node has only the local connections therefore owns only local information about the entire networks. Theoretical analysis and numerical simulation show that adjusting the ratio of the number of nodes obtaining the global information of the network to the total number of nodes can effectively control the valuing range for the power-law exponent of the new network. Therefore, if the topological structure of a complex network, especially its exponent of power-law degree distribution, needs controlling, we just add or take away a few nodes which own the global information of the network.
文摘The bipartite graph structure exists in the connections of many objects in the real world, and the evolving modeling is a good method to describe and understand the generation and evolution within various real complex networks. Previous bipartite models were proposed to mostly explain the principle of attachments, and ignored the diverse growth speed of nodes of sets in different bipartite networks. In this paper, we propose an evolving bipartite network model with adjustable node scale and hybrid attachment mechanisms, which uses different probability parameters to control the scale of two disjoint sets of nodes and the preference strength of hybrid attachment respectively. The results show that the degree distribution of single set in the proposed model follows a shifted power-law distribution when parameter r and s are not equal to 0, or exponential distribution when r or s is equal to 0. Furthermore, we extend the previous model to a semi-bipartite network model, which embeds more user association information into the internal network, so that the model is capable of carrying and revealing more deep information of each user in the network. The simulation results of two models are in good agreement with the empirical data, which verifies that the models have a good performance on real networks from the perspective of degree distribution. We believe these two models are valuable for an explanation of the origin and growth of bipartite systems that truly exist.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.71071098,91024026,and 71171136)supported by the Shanghai Rising-Star Program,China(Grant No.11QA1404500)the Leading Academic Discipline Project of Shanghai City,China(Grant No.XTKX2012)
文摘Complex hypernetworks are ubiquitous in the real system. It is very important to investigate the evolution mecha- nisms. In this paper, we present a local-world evolving hypernetwork model by taking into account the hyperedge growth and local-world hyperedge preferential attachment mechanisms. At each time step, a newly added hyperedge encircles a new coming node and a number of nodes from a randomly selected local world. The number of the selected nodes from the local world obeys the uniform distribution and its mean value is m. The analytical and simulation results show that the hyperdegree approximately obeys the power-law form and the exponent of hyperdegree distribution is 7 = 2 + 1/m. Furthermore, we numerically investigate the node degree, hyperedge degree, clustering coefficient, as well as the average distance, and find that the hypemetwork model shares the scale-flee and small-world properties, which shed some light for deeply understanding the evolution mechanism of the real systems.
基金supported by National Science and Technology Major Project under Grant No. 2012ZX03004001the National Natural Science Foundation of China under Grant No. 60971083
文摘To accurately describe the evolving features of Mobile Ad Hoc Networks (MANETs) and to improve the performance of such networks, an evolving topology model with local-area preference is proposed. The aim of the model, which is analyzed by the mean field theory, is to optimize network structures based on users' behaviors in MANETs. The analysis results indicate that the network generated by this evolving model is a kind of scale-free network. This evolving model can improve the fault-tolerance performance of networks by balancing the connectivity and two factors, i.e., the remaining energy and the distance to nodes. The simulation results show that the evolving topology model has superior performance in reducing the traffic load and the energy consumption, prolonging network lifetime and improving the scalability of networks. It is an available approach for establishing and analyzing actual MANETs.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11305139 and 11147178
文摘To describe the empirical data of collaboration networks, several evolving mechanisms have been proposed, which usually introduce different dynamics factors controlling the network growth. These models can reasonably reproduce the empirical degree distributions for a number of we11-studied real-world collaboration networks. On the basis of the previous studies, in this work we propose a collaboration network model in which the network growth is simultaneously controlled by three factors, including partial preferential attachment, partial random attachment and network growth speed. By using a rate equation method, we obtain an analytical formula for the act degree distribution. We discuss the dependence of the act degree distribution on these different dynamics factors. By fitting to the empirical data of two typical collaboration networks, we can extract the respective contributions of these dynamics factors to the evolution of each networks.
基金This work was supported by the Hong Kong Research Grants Council under the CERG Grants CityU 1031/01E and 1115/03E.
文摘A multi-local-world model is introduced to describe the evolving networks that have a localization property such as the Internet. Based on this model, we show that the traffic load defined by 'betweenness centrality' on the multi-local-world scale-free networks' model also follows a power law form. In this kind of network, a few vertices have heavier loads and so play more important roles than the others in the network.
文摘To search for the Design Patterns’ influence on the software, the paper abstracts the feature models of 9 kinds of classic exiting design patterns among the 23 kinds and describes the features with algorithm language. Meanwhile, searching for the specific structure features in the network, the paper designs 9 matching algorithms of the 9 kinds design patterns mentioned above to research on the structure of the design patterns in the software network. At last, the paper analyzes the evolving trends of the software scale and the application frequency of the 9 kinds of design patterns as the software evolves, and search for the rules how these design patterns are applied into 4 kinds of typical software.
基金supported by the National Natural Science Foundation of China (Grant Nos.60574036,60774088)the Research Fund for the Doctoral Program of China (No.20050055013)+2 种基金the Program for New Century Excellent Talents in University of China (No.NCET)the Science&Technology Research Key Project of Education Ministry of China (No.107024)the Tianjin Municipal Science and Technology Research Fund for Universities (No.20071306).
文摘An improved susceptible-infected-susceptible(SIS)model in the local-world evolving network model is presented to study the epidemic spreading behavior with time delay,which is added into the infected phase.The local-world evolving model displays a transition from the exponential network to the scale-free network with respect to the degree distribution.Two typical delay regimes,i.e.,uniform and degree-dependent delays are incorporated into the SIS epidemic model to investigate the epidemic infection processes in the local-world net-work model.The results indicate that the infection delay will promote the epidemic outbreaks,increase the prevalence and reduce the critical threshold of epidemic spreading.It is also found that local-world size M will considerably influence the epidemic spreading behavior with time delay in the local-world network through large-scale numerical simulations.Simulation results are also of relevance to fight epidemic outbreaks.
基金supported by the National Basic Research Program of China(2013CB329102)the National Natural Science Foundation of China(61372120,61271019,61101119,61121001,61072057,60902051)+1 种基金the PCSIRT(IRT1049)the Beijing Higher Education Young Elite Teacher Project(YETP0473)
文摘In order to reveal the intrinsic properties of scientific collaboration networks, a new local-world evolution model on a scientific collaboration network is proposed by analysing the network growth mechanism. The act degree as the measurement of preferential attachment is taken, and the local-world information of nodes is taken into account. Analysis and simulation show that the node degree and the node strength obey the power-law distribution. Low average path length and high clustering coefficient are approved. Experiment indicates that the model can depict efficiently the topological structure and statistical characteristics of real-life scientific collaboration networks.