提出了一种高精度的近场和远场混合信号源定位算法.此算法利用混合源阵列流形的对称性特点,从阵列流形里分离出到达角(direction of arrival,DOA)信息,并实现对所有近场与远场信号源DOA的估计.基于得到的DOA估计值,根据近场与远场源距...提出了一种高精度的近场和远场混合信号源定位算法.此算法利用混合源阵列流形的对称性特点,从阵列流形里分离出到达角(direction of arrival,DOA)信息,并实现对所有近场与远场信号源DOA的估计.基于得到的DOA估计值,根据近场与远场源距离参数位于不同区间的特点实现对近场及远场源的分类,以及对近场源距离参数的估计.此算法由于充分利用了数据协方差矩阵的信息,并且基于多项式根值方法形成了一个统一的DOA估计器,所以获得了一个高精度的DOA估计性能,且进一步提高了近场源range参数的估计精度.此外,此算法不需要构造高阶累积量,不需要进行二维搜索,不需要进行参数配对;所有的实现过程仅需一维搜索,计算量小,实现简便.数值及与现有算法的对比实验验证了所提出算法的有效性及优越性.展开更多
研究了基于随机信标的水下同时制图定位(simultaneous localization and mapping,SLAM)导航定位方法。信标导航是目前导航领域的研究热点,但往往需要提前对信标位置进行标定。对此文中提出一种无需位置标定的随机信标导航方法,即在信标...研究了基于随机信标的水下同时制图定位(simultaneous localization and mapping,SLAM)导航定位方法。信标导航是目前导航领域的研究热点,但往往需要提前对信标位置进行标定。对此文中提出一种无需位置标定的随机信标导航方法,即在信标随机散布的情况下,通过量测信标和航行器间的距离和方位,用SLAM方法对随机信标位置进行估计,从而实现对航行器的导航,并在不同的信标密度和观测误差下分析了其导航精度。仿真结果表明,该导航方法具有良好的收敛性和定位精度。展开更多
This paper presents a source localization algorithm based on the source signal's time-difference-of-arrival(TDOA) for asynchronous wireless sensor network.To obtain synchronization among anchors,all anchors broadc...This paper presents a source localization algorithm based on the source signal's time-difference-of-arrival(TDOA) for asynchronous wireless sensor network.To obtain synchronization among anchors,all anchors broadcast signals periodically,the clock offsets and skews of anchor pairs can be estimated using broadcasting signal's time-of-arrivals(TOA) at anchors.A kalman filter is adopted to improve the accuracy of clock offsets and track the clock drifts due to random fluctuations.Once the source transmits signal,the TOAs at anchors are stamped respectively and source's TDOA error due to clock offset and skew of anchor pair can be mitigated by a compensation operation.Based on a Gaussian noise model,maximum likelihood estimation(MLE) for the source position is obtained.Performance issues are addressed by evaluating the Cramer-Rao lower bound and the selection of broadcasting period.The proposed algorithm is simple and effective,which has close performance with synchronous TDOA algorithm.展开更多
The problem of mobile localization for wireless sensor network has attracted considerable attention in recent years. The localization accuracy will drastically grade in non-line of sight(NLOS) conditions. In this pape...The problem of mobile localization for wireless sensor network has attracted considerable attention in recent years. The localization accuracy will drastically grade in non-line of sight(NLOS) conditions. In this paper, we propose a mobile localization strategy based on Kalman filter. The key technologies for the proposed method are the NLOS identification and mitigation. The proposed method does not need the prior knowledge of the NLOS error and it is independent of the physical measurement ways. Simulation results show that the proposed method owns the higher localization accuracy when compared with other methods.展开更多
文摘提出了一种高精度的近场和远场混合信号源定位算法.此算法利用混合源阵列流形的对称性特点,从阵列流形里分离出到达角(direction of arrival,DOA)信息,并实现对所有近场与远场信号源DOA的估计.基于得到的DOA估计值,根据近场与远场源距离参数位于不同区间的特点实现对近场及远场源的分类,以及对近场源距离参数的估计.此算法由于充分利用了数据协方差矩阵的信息,并且基于多项式根值方法形成了一个统一的DOA估计器,所以获得了一个高精度的DOA估计性能,且进一步提高了近场源range参数的估计精度.此外,此算法不需要构造高阶累积量,不需要进行二维搜索,不需要进行参数配对;所有的实现过程仅需一维搜索,计算量小,实现简便.数值及与现有算法的对比实验验证了所提出算法的有效性及优越性.
文摘研究了基于随机信标的水下同时制图定位(simultaneous localization and mapping,SLAM)导航定位方法。信标导航是目前导航领域的研究热点,但往往需要提前对信标位置进行标定。对此文中提出一种无需位置标定的随机信标导航方法,即在信标随机散布的情况下,通过量测信标和航行器间的距离和方位,用SLAM方法对随机信标位置进行估计,从而实现对航行器的导航,并在不同的信标密度和观测误差下分析了其导航精度。仿真结果表明,该导航方法具有良好的收敛性和定位精度。
基金supported by the National Natural Science Foundation of China under Grant No.61571452 and No.61201331
文摘This paper presents a source localization algorithm based on the source signal's time-difference-of-arrival(TDOA) for asynchronous wireless sensor network.To obtain synchronization among anchors,all anchors broadcast signals periodically,the clock offsets and skews of anchor pairs can be estimated using broadcasting signal's time-of-arrivals(TOA) at anchors.A kalman filter is adopted to improve the accuracy of clock offsets and track the clock drifts due to random fluctuations.Once the source transmits signal,the TOAs at anchors are stamped respectively and source's TDOA error due to clock offset and skew of anchor pair can be mitigated by a compensation operation.Based on a Gaussian noise model,maximum likelihood estimation(MLE) for the source position is obtained.Performance issues are addressed by evaluating the Cramer-Rao lower bound and the selection of broadcasting period.The proposed algorithm is simple and effective,which has close performance with synchronous TDOA algorithm.
基金supported by the National Natural Science Foundation of China under Grant No. 61403068, No. 61232016, No. U1405254 and No. 61501100Fundamental Research Funds for the Central Universities of China under Grant No. N130323002 and No. N130323004+3 种基金Natural Science Foundation of Hebei Province under Grant No. F2015501097 and No. F2016501080Scientific Research Fund of Hebei Provincial Education Department under Grant No. Z2014078the PAPD fundNEUQ internal funding under Grant No. XNB201509 and XNB201510
文摘The problem of mobile localization for wireless sensor network has attracted considerable attention in recent years. The localization accuracy will drastically grade in non-line of sight(NLOS) conditions. In this paper, we propose a mobile localization strategy based on Kalman filter. The key technologies for the proposed method are the NLOS identification and mitigation. The proposed method does not need the prior knowledge of the NLOS error and it is independent of the physical measurement ways. Simulation results show that the proposed method owns the higher localization accuracy when compared with other methods.