Localization is crucial in wireless sensor networks for various applications,such as tracking objects in outdoor environments where GPS(Global Positioning System)or prior installed infrastructure is unavailable.Howeve...Localization is crucial in wireless sensor networks for various applications,such as tracking objects in outdoor environments where GPS(Global Positioning System)or prior installed infrastructure is unavailable.However,traditional techniques involve many anchor nodes,increasing costs and reducing accuracy.Existing solutions do not address the selection of appropriate anchor nodes and selecting localized nodes as assistant anchor nodes for the localization process,which is a critical element in the localization process.Furthermore,an inaccurate average hop distance significantly affects localization accuracy.We propose an improved DV-Hop algorithm based on anchor sets(AS-IDV-Hop)to improve the localization accuracy.Through simulation analysis,we validated that the ASIDV-Hop proposed algorithm is more efficient in minimizing localization errors than existing studies.The ASIDV-Hop algorithm provides an efficient and cost-effective solution for localization in Wireless Sensor Networks.By strategically selecting anchor and assistant anchor nodes and rectifying the average hop distance,AS-IDV-Hop demonstrated superior performance,achieving a mean accuracy of approximately 1.59,which represents about 25.44%,38.28%,and 73.00%improvement over other algorithms,respectively.The estimated localization error is approximately 0.345,highlighting AS-IDV-Hop’s effectiveness.This substantial reduction in localization error underscores the advantages of implementing AS-IDV-Hop,particularly in complex scenarios requiring precise node localization.展开更多
Aiming at localizing the telemetric capsule for detecting gastrointestinal physiological parameters in vivo accurately,a portable alternating current(AC)electromagnetic localization system is designed.To verify the fe...Aiming at localizing the telemetric capsule for detecting gastrointestinal physiological parameters in vivo accurately,a portable alternating current(AC)electromagnetic localization system is designed.To verify the feasibility of the method,the model and construction of the localization system are detailed.And static and dynamic accuracy of the localization system are tested by experiments.Next,we compare the simulating results of the electromagnetic radiation aroused by the localization system with the electromagnetic safety standards of human(ICNIRP guidelines and IEEE standard C95.1-1991).Finally,in terms of the results of the static and dynamic experiments,conclusions are drawn that the accuracy of portable positioning system is high(less than 10 mm)enough to satisfy the localization need of the micro invasive medical devices in vivo,and there is no harm of electromagnetic radiation to human.展开更多
Various land use and land cover(LULC)products have been produced over the past decade with the development of remote sensing technology.Despite the differences in LULC classification schemes,there is a lack of researc...Various land use and land cover(LULC)products have been produced over the past decade with the development of remote sensing technology.Despite the differences in LULC classification schemes,there is a lack of research on assessing the accuracy of their application to croplands in a unified framework.Thus,this study evaluated the spatial and area accuracies of cropland classification for four commonly used global LULC products(i.e.,MCD12Q1V6,GlobCover2009,FROM-GLC and GlobeLand30)based on the harmonised FAO criterion,and quantified the relationships between four factors(i.e.,slope,elevation,field size and crop system)and cropland classification agreement.The validation results indicated that MCD12Q1 and GlobeLand30 performed well in cropland classification regarding spatial consistency,with overall accuracies of 94.90 and 93.52%,respectively.The FROMGLC showed the worst performance,with an overall accuracy of 83.17%.Overlaying the cropland generated by the four global LULC products,we found the proportions of complete agreement and disagreement were 15.51 and 44.72% for the cropland classification,respectively.High consistency was mainly observed in the Northeast China Plain,the Huang-Huai-Hai Plain and the northern part of the Middle-lower Yangtze Plain,China.In contrast,low consistency was detected primarily on the eastern edge of the northern and semiarid region,the Yunnan-Guizhou Plateau and southern China.Field size was the most important factor for mapping cropland.For area accuracy,compared with China Statistical Yearbook data at the provincial scale,the accuracies of different products in descending order were:GlobeLand30,FROM-GLC,MCD12Q1,and GlobCover2009.The cropland classification schemes mainly caused large area deviations among the four products,and they also resulted in the different ranks of spatial accuracy and area accuracy among the four products.Our results can provide valuable suggestions for selecting cropland products at the national or provincial scale and help cropland mapping and reconstruction,which is essential for food security and crop management,so they can also contribute to achieving the Sustainable Development Goals issued by the United Nations.展开更多
BACKGROUND The FreeStyle Libre flash glucose monitoring(FGM)system entered the Chinese market in 2017 to complement the self-monitoring of blood glucose.Due to its increased usage in clinics,the number of studies inve...BACKGROUND The FreeStyle Libre flash glucose monitoring(FGM)system entered the Chinese market in 2017 to complement the self-monitoring of blood glucose.Due to its increased usage in clinics,the number of studies investigating its accuracy has increased.However,its accuracy has not been investigated in highland populations in China.AIM To evaluate measurements recorded using the FreeStyle Libre FGM system compared with capillary blood glucose measured using the enzyme electrode method in patients with type 2 diabetes(T2D)who had migrated within 3 mo from highlands to plains.METHODS Overall,68 patients with T2D,selected from those who had recently migrated from highlands to plains(within 3 mo),were hospitalized at the Department of Endocrinology from August to October 2017 and underwent continuous glucose monitoring(CGM)with the FreeStyle Libre FGM system for 14 d.Throughout the study period,fingertip capillary blood glucose was measured daily using the enzyme electrode method(Super GL,China),and blood glucose levels were read from the scanning probe during fasting and 2 h after all three meals.Moreover,the time interval between reading the data from the scanning probe and collecting fingertip capillary blood was controlled to<5 min.The accuracy of the FGM system was evaluated according to the CGM guidelines.Subsequently,the factors influencing the mean absolute relative difference(MARD)of this system were analyzed by a multiple linear regression method.RESULTS Pearson’s correlation analysis showed that the fingertip and scanned glucose levels were positively correlated(R=0.86,P=0.00).The aggregated MARD of scanned glucose was 14.28±13.40%.Parker's error analysis showed that 99.30%of the data pairs were located in areas A and B.According to the probe wear time of the FreeStyle Libre FGM system,MARD_(1 d) and MARD_(2-14 d) were 16.55%and 14.35%,respectively(t=1.23,P=0.22).Multiple stepwise regression analysis showed that MARD did not correlate with blood glucose when the largest amplitude of glycemic excursion(LAGE)was<5.80 mmol/L but negatively correlated with blood glucose when the LAGE was≥5.80 mmol/L.CONCLUSION The FreeStyle Libre FGM system has good accuracy in patients with T2D who had recently migrated from highlands to plains.This system might be ideal for avoiding the effects of high hematocrit on blood glucose monitoring in populations that recently migrated to plains.MARD is mainly influenced by glucose levels and fluctuations,and the accuracy of the system is higher when the blood glucose fluctuation is small.In case of higher blood glucose level fluctuations,deviation in the scanned glucose levels is the highest at extremely low blood glucose levels.展开更多
Early screening of diabetes retinopathy(DR)plays an important role in preventing irreversible blindness.Existing research has failed to fully explore effective DR lesion information in fundus maps.Besides,traditional ...Early screening of diabetes retinopathy(DR)plays an important role in preventing irreversible blindness.Existing research has failed to fully explore effective DR lesion information in fundus maps.Besides,traditional attention schemes have not considered the impact of lesion type differences on grading,resulting in unreasonable extraction of important lesion features.Therefore,this paper proposes a DR diagnosis scheme that integrates a multi-level patch attention generator(MPAG)and a lesion localization module(LLM).Firstly,MPAGis used to predict patches of different sizes and generate a weighted attention map based on the prediction score and the types of lesions contained in the patches,fully considering the impact of lesion type differences on grading,solving the problem that the attention maps of lesions cannot be further refined and then adapted to the final DR diagnosis task.Secondly,the LLM generates a global attention map based on localization.Finally,the weighted attention map and global attention map are weighted with the fundus map to fully explore effective DR lesion information and increase the attention of the classification network to lesion details.This paper demonstrates the effectiveness of the proposed method through extensive experiments on the public DDR dataset,obtaining an accuracy of 0.8064.展开更多
The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel micr...The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel microelectrode arrays(MEAs)can rapidly and precisely locate the STN,which is important for precise stimulation.In this paper,16-channel MEAs modified with multiwalled carbon nanotube/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(MWCNT/PEDOT:PSS)nanocomposites were designed and fabricated,and the accurate and rapid identification of the STN in PD rats was performed using detection sites distributed at different brain depths.These results showed that nuclei in 6-hydroxydopamine hydrobromide(6-OHDA)-lesioned brains discharged more intensely than those in unlesioned brains.In addition,the MEA simultaneously acquired neural signals from both the STN and the upper or lower boundary nuclei of the STN.Moreover,higher values of spike firing rate,spike amplitude,local field potential(LFP)power,and beta oscillations were detected in the STN of the 6-OHDA-lesioned brain,and may therefore be biomarkers of STN localization.Compared with the STNs of unlesioned brains,the power spectral density of spikes and LFPs synchronously decreased in the delta band and increased in the beta band of 6-OHDA-lesioned brains.This may be a cause of sleep and motor disorders associated with PD.Overall,this work describes a new cellular-level localization and detection method and provides a tool for future studies of deep brain nuclei.展开更多
BACKGROUND As one of the fatal diseases with high incidence,lung cancer has seriously endangered public health and safety.Elderly patients usually have poor self-care and are more likely to show a series of psychologi...BACKGROUND As one of the fatal diseases with high incidence,lung cancer has seriously endangered public health and safety.Elderly patients usually have poor self-care and are more likely to show a series of psychological problems.AIM To investigate the effectiveness of the initial check,information exchange,final accuracy check,reaction(IIFAR)information care model on the mental health status of elderly patients with lung cancer.METHODS This study is a single-centre study.We randomly recruited 60 elderly patients with lung cancer who attended our hospital from January 2021 to January 2022.These elderly patients with lung cancer were randomly divided into two groups,with the control group taking the conventional propaganda and education and the observation group taking the IIFAR information care model based on the conventional care protocol.The differences in psychological distress,anxiety and depression,life quality,fatigue,and the locus of control in psychology were compared between these two groups,and the causes of psychological distress were analyzed.RESULTS After the intervention,Distress Thermometer,Hospital Anxiety and Depression Scale(HADS)for anxiety and the HADS for depression,Revised Piper’s Fatigue Scale,and Chance Health Locus of Control scores were lower in the observation group compared to the pre-intervention period in the same group and were significantly lower in the observation group compared to those of the control group(P<0.05).After the intervention,Quality of Life Questionnaire Core 30(QLQ-C30),Internal Health Locus of Control,and Powerful Others Health Locus of Control scores were significantly higher in the observation and the control groups compared to the pre-intervention period in their same group,and QLQ-C30 scores were significantly higher in the observation group compared to those of the control group(P<0.05).CONCLUSION The IIFAR information care model can help elderly patients with lung cancer by reducing their anxiety and depression,psychological distress,and fatigue,improving their tendencies on the locus of control in psychology,and enhancing their life qualities.展开更多
Secure authentication and accurate localization among Internet of Things(IoT)sensors are pivotal for the functionality and integrity of IoT networks.IoT authentication and localization are intricate and symbiotic,impa...Secure authentication and accurate localization among Internet of Things(IoT)sensors are pivotal for the functionality and integrity of IoT networks.IoT authentication and localization are intricate and symbiotic,impacting both the security and operational functionality of IoT systems.Hence,accurate localization and lightweight authentication on resource-constrained IoT devices pose several challenges.To overcome these challenges,recent approaches have used encryption techniques with well-known key infrastructures.However,these methods are inefficient due to the increasing number of data breaches in their localization approaches.This proposed research efficiently integrates authentication and localization processes in such a way that they complement each other without compromising on security or accuracy.The proposed framework aims to detect active attacks within IoT networks,precisely localize malicious IoT devices participating in these attacks,and establish dynamic implicit authentication mechanisms.This integrated framework proposes a Correlation Composition Awareness(CCA)model,which explores innovative approaches to device correlations,enhancing the accuracy of attack detection and localization.Additionally,this framework introduces the Pair Collaborative Localization(PCL)technique,facilitating precise identification of the exact locations of malicious IoT devices.To address device authentication,a Behavior and Performance Measurement(BPM)scheme is developed,ensuring that only trusted devices gain access to the network.This work has been evaluated across various environments and compared against existing models.The results prove that the proposed methodology attains 96%attack detection accuracy,84%localization accuracy,and 98%device authentication accuracy.展开更多
In situations when the precise position of a machine is unknown,localization becomes crucial.This research focuses on improving the position prediction accuracy over long-range(LoRa)network using an optimized machine ...In situations when the precise position of a machine is unknown,localization becomes crucial.This research focuses on improving the position prediction accuracy over long-range(LoRa)network using an optimized machine learning-based technique.In order to increase the prediction accuracy of the reference point position on the data collected using the fingerprinting method over LoRa technology,this study proposed an optimized machine learning(ML)based algorithm.Received signal strength indicator(RSSI)data from the sensors at different positions was first gathered via an experiment through the LoRa network in a multistory round layout building.The noise factor is also taken into account,and the signal-to-noise ratio(SNR)value is recorded for every RSSI measurement.This study concludes the examination of reference point accuracy with the modified KNN method(MKNN).MKNN was created to more precisely anticipate the position of the reference point.The findings showed that MKNN outperformed other algorithms in terms of accuracy and complexity.展开更多
This study comprehensively examines the current state of deep learning (DL) usage in indoor positioning.It emphasizes the significance and efficiency of convolutional neural networks (CNNs) and recurrent neuralnetwork...This study comprehensively examines the current state of deep learning (DL) usage in indoor positioning.It emphasizes the significance and efficiency of convolutional neural networks (CNNs) and recurrent neuralnetworks (RNNs). Unlike prior studies focused on single sensor modalities like Wi-Fi or Bluetooth, this researchexplores the integration of multiple sensor modalities (e.g.,Wi-Fi, Bluetooth, Ultra-Wideband, ZigBee) to expandindoor localization methods, particularly in obstructed environments. It addresses the challenge of precise objectlocalization, introducing a novel hybrid DL approach using received signal information (RSI), Received SignalStrength (RSS), and Channel State Information (CSI) data to enhance accuracy and stability. Moreover, thestudy introduces a device-free indoor localization algorithm, offering a significant advancement with potentialobject or individual tracking applications. It recognizes the increasing importance of indoor positioning forlocation-based services. It anticipates future developments while acknowledging challenges such as multipathinterference, noise, data standardization, and scarcity of labeled data. This research contributes significantly toindoor localization technology, offering adaptability, device independence, and multifaceted DL-based solutionsfor real-world challenges and future advancements. Thus, the proposed work addresses challenges in objectlocalization precision and introduces a novel hybrid deep learning approach, contributing to advancing locationcentricservices.While deep learning-based indoor localization techniques have improved accuracy, challenges likedata noise, standardization, and availability of training data persist. However, ongoing developments are expectedto enhance indoor positioning systems to meet real-world demands.展开更多
Wi Fi and fingerprinting localization method have been a hot topic in indoor positioning because of their universality and location-related features.The basic assumption of fingerprinting localization is that the rece...Wi Fi and fingerprinting localization method have been a hot topic in indoor positioning because of their universality and location-related features.The basic assumption of fingerprinting localization is that the received signal strength indication(RSSI)distance is accord with the location distance.Therefore,how to efficiently match the current RSSI of the user with the RSSI in the fingerprint database is the key to achieve high-accuracy localization.In this paper,a particle swarm optimization-extreme learning machine(PSO-ELM)algorithm is proposed on the basis of the original fingerprinting localization.Firstly,we collect the RSSI of the experimental area to construct the fingerprint database,and the ELM algorithm is applied to the online stages to determine the corresponding relation between the location of the terminal and the RSSI it receives.Secondly,PSO algorithm is used to improve the bias and weight of ELM neural network,and the global optimal results are obtained.Finally,extensive simulation results are presented.It is shown that the proposed algorithm can effectively reduce mean error of localization and improve positioning accuracy when compared with K-Nearest Neighbor(KNN),Kmeans and Back-propagation(BP)algorithms.展开更多
Localization phenomenon is an important research field in condensed matter physics.However,due to the complexity and subtlety of disordered systems,new localization phenomena always emerge unexpectedly.For example,it ...Localization phenomenon is an important research field in condensed matter physics.However,due to the complexity and subtlety of disordered systems,new localization phenomena always emerge unexpectedly.For example,it is generally believed that the phase of the hopping term does not affect the localization properties of the system,so the calculation of the phase is often ignored in the study of localization.Here,we introduce a quasiperiodic model and demonstrate that the phase change of the hopping term can significantly alter the localization properties of the system through detailed numerical simulations,such as the inverse participation ratio and multifractal analysis.This phase-induced localization transition provides valuable information for the study of localization physics.展开更多
Topological insulators occupy a prominent position in the realm of condensed matter physics. Nevertheless, the presence of strong disorder has the potential to disrupt the integrity of topological states, leading to t...Topological insulators occupy a prominent position in the realm of condensed matter physics. Nevertheless, the presence of strong disorder has the potential to disrupt the integrity of topological states, leading to the localization of all states.This study delves into the intricate interplay between topology and localization within the one-dimensional Su–Schrieffer–Heeger(SSH) model, which incorporates controllable off-diagonal quasi-periodic modulations on superconducting circuits.Through the application of external alternating current(ac) magnetic fluxes, each transmon undergoes controlled driving,enabling independent tuning of all coupling strengths. Within a framework of this model, we construct comprehensive phase diagrams delineating regions characterized by extended topologically nontrivial states, critical localization, and coexisting topological and critical localization phases. The paper also addresses the dynamics of qubit excitations, elucidating distinct quantum state transfers resulting from the intricate interplay between topology and localization. Additionally, we propose a method for detecting diverse quantum phases utilizing existing experimental setups.展开更多
BACKGROUND Helicobacter pylori(H.pylori)infection has been well-established as a significant risk factor for several gastrointestinal disorders.The urea breath test(UBT)has emerged as a leading non-invasive method for...BACKGROUND Helicobacter pylori(H.pylori)infection has been well-established as a significant risk factor for several gastrointestinal disorders.The urea breath test(UBT)has emerged as a leading non-invasive method for detecting H.pylori.Despite numerous studies confirming its substantial accuracy,the reliability of UBT results is often compromised by inherent limitations.These findings underscore the need for a rigorous statistical synthesis to clarify and reconcile the diagnostic accuracy of the UBT for the diagnosis of H.pylori infection.AIM To determine and compare the diagnostic accuracy of 13C-UBT and 14C-UBT for H.pylori infection in adult patients with dyspepsia.METHODS We conducted an independent search of the PubMed/MEDLINE,EMBASE,and Cochrane Central databases until April 2022.Our search included diagnostic accuracy studies that evaluated at least one of the index tests(^(13)C-UBT or ^(14)C-UBT)against a reference standard.We used the QUADAS-2 tool to assess the methodo-logical quality of the studies.We utilized the bivariate random-effects model to calculate sensitivity,specificity,positive and negative test likelihood ratios(LR+and LR-),as well as the diagnostic odds ratio(DOR),and their 95%confidence intervals.We conducted subgroup analyses based on urea dosing,time after urea administration,and assessment technique.To investigate a possible threshold effect,we conducted Spearman correlation analysis,and we generated summary receiver operating characteristic(SROC)curves to assess heterogeneity.Finally,we visually inspected a funnel plot and used Egger’s test to evaluate publication bias.endorsing both as reliable diagnostic tools in clinical practice.CONCLUSION In summary,our study has demonstrated that ^(13)C-UBT has been found to outperform the ^(14)C-UBT,making it the preferred diagnostic approach.Additionally,our results emphasize the significance of carefully considering urea dosage,assessment timing,and measurement techniques for both tests to enhance diagnostic precision.Nevertheless,it is crucial for researchers and clinicians to evaluate the strengths and limitations of our findings before implementing them in practice.展开更多
We investigate the non-Hermitian effects on quantum diffusion in a kicked rotor model where the complex kicking potential is quasi-periodically modulated in the time domain.The synthetic space with arbitrary dimension...We investigate the non-Hermitian effects on quantum diffusion in a kicked rotor model where the complex kicking potential is quasi-periodically modulated in the time domain.The synthetic space with arbitrary dimension can be created by incorporating incommensurate frequencies in the quasi-periodical modulation.In the Hermitian case,strong kicking induces the chaotic diffusion in the four-dimension momentum space characterized by linear growth of mean energy.We find that the quantum coherence in deep non-Hermitian regime can effectively suppress the chaotic diffusion and hence result in the emergence of dynamical localization.Moreover,the extent of dynamical localization is dramatically enhanced by increasing the non-Hermitian parameter.Interestingly,the quasi-energies become complex when the non-Hermitian parameter exceeds a certain threshold value.The quantum state will finally evolve to a quasi-eigenstate for which the imaginary part of its quasi-energy is large most.The exponential localization length decreases with the increase of the non-Hermitian parameter,unveiling the underlying mechanism of the enhancement of the dynamical localization by nonHermiticity.展开更多
Objective To assess the diagnostic accuracy of bowel sound analysis for irritable bowel syndrome(IBS)with a systematic review and meta-analysis.Methods We searched MEDLINE,Embase,the Cochrane Library,Web of Science,an...Objective To assess the diagnostic accuracy of bowel sound analysis for irritable bowel syndrome(IBS)with a systematic review and meta-analysis.Methods We searched MEDLINE,Embase,the Cochrane Library,Web of Science,and IEEE Xplore databases until September 2023.Cross-sectional and case-control studies on diagnostic accuracy of bowel sound analysis for IBS were identified.We estimated the pooled sensitivity,specificity,positive likelihood ratio,negative likeli-hood ratio,and diagnostic odds ratio with a 95% confidence interval(CI),and plotted a summary receiver operat-ing characteristic curve and evaluated the area under the curve.Results Four studies were included.The pooled diagnostic sensitivity,specificity,positive likelihood ratio,nega-tive likelihood ratio,and diagnostic odds ratio were 0.94(95%CI,0.87‒0.97),0.89(95%CI,0.81‒0.94),8.43(95%CI,4.81‒14.78),0.07(95%CI,0.03‒0.15),and 118.86(95%CI,44.18‒319.75),respectively,with an area under the curve of 0.97(95%CI,0.95‒0.98).Conclusions Computerized bowel sound analysis is a promising tool for IBS.However,limited high-quality data make the results'validity and applicability questionable.There is a need for more diagnostic test accuracy studies and better wearable devices for monitoring and analysis of IBS.展开更多
Owing to the ubiquity of wireless networks and the popularity of WiFi infrastructures,received signal strength(RSS)-based indoor localization systems have received much attention.The placement of access points(APs)sig...Owing to the ubiquity of wireless networks and the popularity of WiFi infrastructures,received signal strength(RSS)-based indoor localization systems have received much attention.The placement of access points(APs)significantly influences localization accuracy and network access.However,the indoor scenario and network access are not fully considered in previous AP placement optimization methods.This study proposes a practical scenario modelingaided AP placement optimization method for improving localization accuracy and network access.In order to reduce the gap between simulation-based and field measurement-based AP placement optimization methods,we introduce an indoor scenario modeling and Gaussian process-based RSS prediction method.After that,the localization and network access metrics are implemented in the multiple objective particle swarm optimization(MOPSO)solution,Pareto front criterion and virtual repulsion force are applied to determine the optimal AP placement.Finally,field experiments demonstrate the effectiveness of the proposed indoor scenario modeling method and RSS prediction model.A thorough comparison confirms the localization and network access improvement attributed to the proposed anchor placement method.展开更多
With the rapid development of smart phone,the location-based services(LBS)have received great attention in the past decades.Owing to the widespread use of WiFi and Bluetooth devices,Received Signal Strength Indication...With the rapid development of smart phone,the location-based services(LBS)have received great attention in the past decades.Owing to the widespread use of WiFi and Bluetooth devices,Received Signal Strength Indication(RSSI)fingerprintbased localization method has obtained much development in both academia and industries.In this work,we introduce an efficient way to reduce the labor-intensive site survey process,which uses an UWB/IMU-assisted fingerprint construction(UAFC)and localization framework based on the principle of Automatic radio map generation scheme(ARMGS)is proposed to replace the traditional manual measurement.To be specific,UWB devices are employed to estimate the coordinates when the collector is moved in a reference point(RP).An anchor self-localization method is investigated to further reduce manual measurement work in a wide and complex environment,which is also a grueling,time-consuming process that is lead to artificial errors.Moreover,the measurements of IMU are incorporated into the UWB localization algorithm and improve the label accuracy in fingerprint.In addition,the weighted k-nearest neighbor(WKNN)algorithm is applied to online localization phase.Finally,filed experiments are carried out and the results confirm the effectiveness of the proposed approach.展开更多
While progress has been made in information source localization,it has overlooked the prevalent friend and adversarial relationships in social networks.This paper addresses this gap by focusing on source localization ...While progress has been made in information source localization,it has overlooked the prevalent friend and adversarial relationships in social networks.This paper addresses this gap by focusing on source localization in signed network models.Leveraging the topological characteristics of signed networks and transforming the propagation probability into effective distance,we propose an optimization method for observer selection.Additionally,by using the reverse propagation algorithm we present a method for information source localization in signed networks.Extensive experimental results demonstrate that a higher proportion of positive edges within signed networks contributes to more favorable source localization,and the higher the ratio of propagation rates between positive and negative edges,the more accurate the source localization becomes.Interestingly,this aligns with our observation that,in reality,the number of friends tends to be greater than the number of adversaries,and the likelihood of information propagation among friends is often higher than among adversaries.In addition,the source located at the periphery of the network is not easy to identify.Furthermore,our proposed observer selection method based on effective distance achieves higher operational efficiency and exhibits higher accuracy in information source localization,compared with three strategies for observer selection based on the classical full-order neighbor coverage.展开更多
Location awareness in wireless networks is essential for emergency services,navigation,gaming,and many other applications.This article presents a method for source localization based on measuring the amplitude-phase d...Location awareness in wireless networks is essential for emergency services,navigation,gaming,and many other applications.This article presents a method for source localization based on measuring the amplitude-phase distribution of the field at the base station.The existing scatterers in the target area create unique scattered field interference at each source location.The unique field interference at each source location results in a unique field signature at the base station which is used for source localization.In the proposed method,the target area is divided into a grid with a step of less than half the wavelength.Each grid node is characterized by its field signature at the base station.Field signatures corresponding to all nodes are normalized and stored in the base station as fingerprints for source localization.The normalization of the field signatures avoids the need for time synchronization between the base station and the source.When a source transmits signals,the generated field signature at the base station is normalized and then correlated with the stored fingerprints.The maximum correlation value is given by the node to which the source is the closest.Numerical simulations and results of experiments on ultrasonic waves in the air show that the ultrasonic source is correctly localized using broadband field signatures with one base station and without time synchronization.The proposed method is potentially applicable for indoor localization and navigation of mobile robots.展开更多
基金supported by the Deanship of Research and Graduate Studies at King Khalid University through a Large Research Project under grant number RGP.2/259/45.
文摘Localization is crucial in wireless sensor networks for various applications,such as tracking objects in outdoor environments where GPS(Global Positioning System)or prior installed infrastructure is unavailable.However,traditional techniques involve many anchor nodes,increasing costs and reducing accuracy.Existing solutions do not address the selection of appropriate anchor nodes and selecting localized nodes as assistant anchor nodes for the localization process,which is a critical element in the localization process.Furthermore,an inaccurate average hop distance significantly affects localization accuracy.We propose an improved DV-Hop algorithm based on anchor sets(AS-IDV-Hop)to improve the localization accuracy.Through simulation analysis,we validated that the ASIDV-Hop proposed algorithm is more efficient in minimizing localization errors than existing studies.The ASIDV-Hop algorithm provides an efficient and cost-effective solution for localization in Wireless Sensor Networks.By strategically selecting anchor and assistant anchor nodes and rectifying the average hop distance,AS-IDV-Hop demonstrated superior performance,achieving a mean accuracy of approximately 1.59,which represents about 25.44%,38.28%,and 73.00%improvement over other algorithms,respectively.The estimated localization error is approximately 0.345,highlighting AS-IDV-Hop’s effectiveness.This substantial reduction in localization error underscores the advantages of implementing AS-IDV-Hop,particularly in complex scenarios requiring precise node localization.
基金National Natural Science Foundation of China(NSFC)(No.30570485)National High Technology Research and Development Program of China(863)(No.2006AA04Z368)Natural Science Foundation of Shanghai,China(No.06ER1406)
文摘Aiming at localizing the telemetric capsule for detecting gastrointestinal physiological parameters in vivo accurately,a portable alternating current(AC)electromagnetic localization system is designed.To verify the feasibility of the method,the model and construction of the localization system are detailed.And static and dynamic accuracy of the localization system are tested by experiments.Next,we compare the simulating results of the electromagnetic radiation aroused by the localization system with the electromagnetic safety standards of human(ICNIRP guidelines and IEEE standard C95.1-1991).Finally,in terms of the results of the static and dynamic experiments,conclusions are drawn that the accuracy of portable positioning system is high(less than 10 mm)enough to satisfy the localization need of the micro invasive medical devices in vivo,and there is no harm of electromagnetic radiation to human.
基金supported by the National Key Research and Development Program of China(2022YFB3903503)the National Natural Science Foundation of China(U1901601)the Science and Technology Project of the Department of Education of Jiangxi Province,China(GJJ210541)。
文摘Various land use and land cover(LULC)products have been produced over the past decade with the development of remote sensing technology.Despite the differences in LULC classification schemes,there is a lack of research on assessing the accuracy of their application to croplands in a unified framework.Thus,this study evaluated the spatial and area accuracies of cropland classification for four commonly used global LULC products(i.e.,MCD12Q1V6,GlobCover2009,FROM-GLC and GlobeLand30)based on the harmonised FAO criterion,and quantified the relationships between four factors(i.e.,slope,elevation,field size and crop system)and cropland classification agreement.The validation results indicated that MCD12Q1 and GlobeLand30 performed well in cropland classification regarding spatial consistency,with overall accuracies of 94.90 and 93.52%,respectively.The FROMGLC showed the worst performance,with an overall accuracy of 83.17%.Overlaying the cropland generated by the four global LULC products,we found the proportions of complete agreement and disagreement were 15.51 and 44.72% for the cropland classification,respectively.High consistency was mainly observed in the Northeast China Plain,the Huang-Huai-Hai Plain and the northern part of the Middle-lower Yangtze Plain,China.In contrast,low consistency was detected primarily on the eastern edge of the northern and semiarid region,the Yunnan-Guizhou Plateau and southern China.Field size was the most important factor for mapping cropland.For area accuracy,compared with China Statistical Yearbook data at the provincial scale,the accuracies of different products in descending order were:GlobeLand30,FROM-GLC,MCD12Q1,and GlobCover2009.The cropland classification schemes mainly caused large area deviations among the four products,and they also resulted in the different ranks of spatial accuracy and area accuracy among the four products.Our results can provide valuable suggestions for selecting cropland products at the national or provincial scale and help cropland mapping and reconstruction,which is essential for food security and crop management,so they can also contribute to achieving the Sustainable Development Goals issued by the United Nations.
基金Supported by Health and Family Planning Project of Sichuan Province,No.17PJ069Tibet Autonomous Region Science and Technology Program,No.XZ202303ZY0011G.
文摘BACKGROUND The FreeStyle Libre flash glucose monitoring(FGM)system entered the Chinese market in 2017 to complement the self-monitoring of blood glucose.Due to its increased usage in clinics,the number of studies investigating its accuracy has increased.However,its accuracy has not been investigated in highland populations in China.AIM To evaluate measurements recorded using the FreeStyle Libre FGM system compared with capillary blood glucose measured using the enzyme electrode method in patients with type 2 diabetes(T2D)who had migrated within 3 mo from highlands to plains.METHODS Overall,68 patients with T2D,selected from those who had recently migrated from highlands to plains(within 3 mo),were hospitalized at the Department of Endocrinology from August to October 2017 and underwent continuous glucose monitoring(CGM)with the FreeStyle Libre FGM system for 14 d.Throughout the study period,fingertip capillary blood glucose was measured daily using the enzyme electrode method(Super GL,China),and blood glucose levels were read from the scanning probe during fasting and 2 h after all three meals.Moreover,the time interval between reading the data from the scanning probe and collecting fingertip capillary blood was controlled to<5 min.The accuracy of the FGM system was evaluated according to the CGM guidelines.Subsequently,the factors influencing the mean absolute relative difference(MARD)of this system were analyzed by a multiple linear regression method.RESULTS Pearson’s correlation analysis showed that the fingertip and scanned glucose levels were positively correlated(R=0.86,P=0.00).The aggregated MARD of scanned glucose was 14.28±13.40%.Parker's error analysis showed that 99.30%of the data pairs were located in areas A and B.According to the probe wear time of the FreeStyle Libre FGM system,MARD_(1 d) and MARD_(2-14 d) were 16.55%and 14.35%,respectively(t=1.23,P=0.22).Multiple stepwise regression analysis showed that MARD did not correlate with blood glucose when the largest amplitude of glycemic excursion(LAGE)was<5.80 mmol/L but negatively correlated with blood glucose when the LAGE was≥5.80 mmol/L.CONCLUSION The FreeStyle Libre FGM system has good accuracy in patients with T2D who had recently migrated from highlands to plains.This system might be ideal for avoiding the effects of high hematocrit on blood glucose monitoring in populations that recently migrated to plains.MARD is mainly influenced by glucose levels and fluctuations,and the accuracy of the system is higher when the blood glucose fluctuation is small.In case of higher blood glucose level fluctuations,deviation in the scanned glucose levels is the highest at extremely low blood glucose levels.
基金supported in part by the Research on the Application of Multimodal Artificial Intelligence in Diagnosis and Treatment of Type 2 Diabetes under Grant No.2020SK50910in part by the Hunan Provincial Natural Science Foundation of China under Grant 2023JJ60020.
文摘Early screening of diabetes retinopathy(DR)plays an important role in preventing irreversible blindness.Existing research has failed to fully explore effective DR lesion information in fundus maps.Besides,traditional attention schemes have not considered the impact of lesion type differences on grading,resulting in unreasonable extraction of important lesion features.Therefore,this paper proposes a DR diagnosis scheme that integrates a multi-level patch attention generator(MPAG)and a lesion localization module(LLM).Firstly,MPAGis used to predict patches of different sizes and generate a weighted attention map based on the prediction score and the types of lesions contained in the patches,fully considering the impact of lesion type differences on grading,solving the problem that the attention maps of lesions cannot be further refined and then adapted to the final DR diagnosis task.Secondly,the LLM generates a global attention map based on localization.Finally,the weighted attention map and global attention map are weighted with the fundus map to fully explore effective DR lesion information and increase the attention of the classification network to lesion details.This paper demonstrates the effectiveness of the proposed method through extensive experiments on the public DDR dataset,obtaining an accuracy of 0.8064.
基金funded by the National Natural Science Foundation of China(Nos.L2224042,T2293731,62121003,61960206012,61973292,62171434,61975206,and 61971400)the Frontier Interdisciplinary Project of the Chinese Academy of Sciences(No.XK2022XXC003)+2 种基金the National Key Research and Development Program of China(Nos.2022YFC2402501 and 2022YFB3205602)the Major Program of Scientific and Technical Innovation 2030(No.2021ZD02016030)the Scientific Instrument Developing Project of he Chinese Academy of Sciences(No.GJJSTD20210004).
文摘The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel microelectrode arrays(MEAs)can rapidly and precisely locate the STN,which is important for precise stimulation.In this paper,16-channel MEAs modified with multiwalled carbon nanotube/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(MWCNT/PEDOT:PSS)nanocomposites were designed and fabricated,and the accurate and rapid identification of the STN in PD rats was performed using detection sites distributed at different brain depths.These results showed that nuclei in 6-hydroxydopamine hydrobromide(6-OHDA)-lesioned brains discharged more intensely than those in unlesioned brains.In addition,the MEA simultaneously acquired neural signals from both the STN and the upper or lower boundary nuclei of the STN.Moreover,higher values of spike firing rate,spike amplitude,local field potential(LFP)power,and beta oscillations were detected in the STN of the 6-OHDA-lesioned brain,and may therefore be biomarkers of STN localization.Compared with the STNs of unlesioned brains,the power spectral density of spikes and LFPs synchronously decreased in the delta band and increased in the beta band of 6-OHDA-lesioned brains.This may be a cause of sleep and motor disorders associated with PD.Overall,this work describes a new cellular-level localization and detection method and provides a tool for future studies of deep brain nuclei.
文摘BACKGROUND As one of the fatal diseases with high incidence,lung cancer has seriously endangered public health and safety.Elderly patients usually have poor self-care and are more likely to show a series of psychological problems.AIM To investigate the effectiveness of the initial check,information exchange,final accuracy check,reaction(IIFAR)information care model on the mental health status of elderly patients with lung cancer.METHODS This study is a single-centre study.We randomly recruited 60 elderly patients with lung cancer who attended our hospital from January 2021 to January 2022.These elderly patients with lung cancer were randomly divided into two groups,with the control group taking the conventional propaganda and education and the observation group taking the IIFAR information care model based on the conventional care protocol.The differences in psychological distress,anxiety and depression,life quality,fatigue,and the locus of control in psychology were compared between these two groups,and the causes of psychological distress were analyzed.RESULTS After the intervention,Distress Thermometer,Hospital Anxiety and Depression Scale(HADS)for anxiety and the HADS for depression,Revised Piper’s Fatigue Scale,and Chance Health Locus of Control scores were lower in the observation group compared to the pre-intervention period in the same group and were significantly lower in the observation group compared to those of the control group(P<0.05).After the intervention,Quality of Life Questionnaire Core 30(QLQ-C30),Internal Health Locus of Control,and Powerful Others Health Locus of Control scores were significantly higher in the observation and the control groups compared to the pre-intervention period in their same group,and QLQ-C30 scores were significantly higher in the observation group compared to those of the control group(P<0.05).CONCLUSION The IIFAR information care model can help elderly patients with lung cancer by reducing their anxiety and depression,psychological distress,and fatigue,improving their tendencies on the locus of control in psychology,and enhancing their life qualities.
文摘Secure authentication and accurate localization among Internet of Things(IoT)sensors are pivotal for the functionality and integrity of IoT networks.IoT authentication and localization are intricate and symbiotic,impacting both the security and operational functionality of IoT systems.Hence,accurate localization and lightweight authentication on resource-constrained IoT devices pose several challenges.To overcome these challenges,recent approaches have used encryption techniques with well-known key infrastructures.However,these methods are inefficient due to the increasing number of data breaches in their localization approaches.This proposed research efficiently integrates authentication and localization processes in such a way that they complement each other without compromising on security or accuracy.The proposed framework aims to detect active attacks within IoT networks,precisely localize malicious IoT devices participating in these attacks,and establish dynamic implicit authentication mechanisms.This integrated framework proposes a Correlation Composition Awareness(CCA)model,which explores innovative approaches to device correlations,enhancing the accuracy of attack detection and localization.Additionally,this framework introduces the Pair Collaborative Localization(PCL)technique,facilitating precise identification of the exact locations of malicious IoT devices.To address device authentication,a Behavior and Performance Measurement(BPM)scheme is developed,ensuring that only trusted devices gain access to the network.This work has been evaluated across various environments and compared against existing models.The results prove that the proposed methodology attains 96%attack detection accuracy,84%localization accuracy,and 98%device authentication accuracy.
基金The research will be funded by the Multimedia University,Department of Information Technology,Persiaran Multimedia,63100,Cyberjaya,Selangor,Malaysia.
文摘In situations when the precise position of a machine is unknown,localization becomes crucial.This research focuses on improving the position prediction accuracy over long-range(LoRa)network using an optimized machine learning-based technique.In order to increase the prediction accuracy of the reference point position on the data collected using the fingerprinting method over LoRa technology,this study proposed an optimized machine learning(ML)based algorithm.Received signal strength indicator(RSSI)data from the sensors at different positions was first gathered via an experiment through the LoRa network in a multistory round layout building.The noise factor is also taken into account,and the signal-to-noise ratio(SNR)value is recorded for every RSSI measurement.This study concludes the examination of reference point accuracy with the modified KNN method(MKNN).MKNN was created to more precisely anticipate the position of the reference point.The findings showed that MKNN outperformed other algorithms in terms of accuracy and complexity.
基金the Fundamental Research Grant Scheme-FRGS/1/2021/ICT09/MMU/02/1,Ministry of Higher Education,Malaysia.
文摘This study comprehensively examines the current state of deep learning (DL) usage in indoor positioning.It emphasizes the significance and efficiency of convolutional neural networks (CNNs) and recurrent neuralnetworks (RNNs). Unlike prior studies focused on single sensor modalities like Wi-Fi or Bluetooth, this researchexplores the integration of multiple sensor modalities (e.g.,Wi-Fi, Bluetooth, Ultra-Wideband, ZigBee) to expandindoor localization methods, particularly in obstructed environments. It addresses the challenge of precise objectlocalization, introducing a novel hybrid DL approach using received signal information (RSI), Received SignalStrength (RSS), and Channel State Information (CSI) data to enhance accuracy and stability. Moreover, thestudy introduces a device-free indoor localization algorithm, offering a significant advancement with potentialobject or individual tracking applications. It recognizes the increasing importance of indoor positioning forlocation-based services. It anticipates future developments while acknowledging challenges such as multipathinterference, noise, data standardization, and scarcity of labeled data. This research contributes significantly toindoor localization technology, offering adaptability, device independence, and multifaceted DL-based solutionsfor real-world challenges and future advancements. Thus, the proposed work addresses challenges in objectlocalization precision and introduces a novel hybrid deep learning approach, contributing to advancing locationcentricservices.While deep learning-based indoor localization techniques have improved accuracy, challenges likedata noise, standardization, and availability of training data persist. However, ongoing developments are expectedto enhance indoor positioning systems to meet real-world demands.
基金supported in part by the National Natural Science Foundation of China(U2001213 and 61971191)in part by the Beijing Natural Science Foundation under Grant L182018 and L201011+2 种基金in part by National Key Research and Development Project(2020YFB1807204)in part by the Key project of Natural Science Foundation of Jiangxi Province(20202ACBL202006)in part by the Innovation Fund Designated for Graduate Students of Jiangxi Province(YC2020-S321)。
文摘Wi Fi and fingerprinting localization method have been a hot topic in indoor positioning because of their universality and location-related features.The basic assumption of fingerprinting localization is that the received signal strength indication(RSSI)distance is accord with the location distance.Therefore,how to efficiently match the current RSSI of the user with the RSSI in the fingerprint database is the key to achieve high-accuracy localization.In this paper,a particle swarm optimization-extreme learning machine(PSO-ELM)algorithm is proposed on the basis of the original fingerprinting localization.Firstly,we collect the RSSI of the experimental area to construct the fingerprint database,and the ELM algorithm is applied to the online stages to determine the corresponding relation between the location of the terminal and the RSSI it receives.Secondly,PSO algorithm is used to improve the bias and weight of ELM neural network,and the global optimal results are obtained.Finally,extensive simulation results are presented.It is shown that the proposed algorithm can effectively reduce mean error of localization and improve positioning accuracy when compared with K-Nearest Neighbor(KNN),Kmeans and Back-propagation(BP)algorithms.
基金supported by the National Natural Science Foundation of China(Grant No.62071248)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ24A040004)+1 种基金Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant No.NY223109)China Postdoctoral Science Foundation(Grant No.2022M721693).
文摘Localization phenomenon is an important research field in condensed matter physics.However,due to the complexity and subtlety of disordered systems,new localization phenomena always emerge unexpectedly.For example,it is generally believed that the phase of the hopping term does not affect the localization properties of the system,so the calculation of the phase is often ignored in the study of localization.Here,we introduce a quasiperiodic model and demonstrate that the phase change of the hopping term can significantly alter the localization properties of the system through detailed numerical simulations,such as the inverse participation ratio and multifractal analysis.This phase-induced localization transition provides valuable information for the study of localization physics.
基金Project supported by the Natural Science Foundation of Shanxi Province,China (Grant No. 202103021223010)。
文摘Topological insulators occupy a prominent position in the realm of condensed matter physics. Nevertheless, the presence of strong disorder has the potential to disrupt the integrity of topological states, leading to the localization of all states.This study delves into the intricate interplay between topology and localization within the one-dimensional Su–Schrieffer–Heeger(SSH) model, which incorporates controllable off-diagonal quasi-periodic modulations on superconducting circuits.Through the application of external alternating current(ac) magnetic fluxes, each transmon undergoes controlled driving,enabling independent tuning of all coupling strengths. Within a framework of this model, we construct comprehensive phase diagrams delineating regions characterized by extended topologically nontrivial states, critical localization, and coexisting topological and critical localization phases. The paper also addresses the dynamics of qubit excitations, elucidating distinct quantum state transfers resulting from the intricate interplay between topology and localization. Additionally, we propose a method for detecting diverse quantum phases utilizing existing experimental setups.
基金Supported by Scientific Initiation Scholarship Programme(PIBIC)of the Bahia State Research Support Foundationthe Doctorate Scholarship Program of the Coordination of Improvement of Higher Education Personnel+1 种基金the Scientific Initiation Scholarship Programme(PIBIC)of the National Council for Scientific and Technological Developmentand the CNPq Research Productivity Fellowship.
文摘BACKGROUND Helicobacter pylori(H.pylori)infection has been well-established as a significant risk factor for several gastrointestinal disorders.The urea breath test(UBT)has emerged as a leading non-invasive method for detecting H.pylori.Despite numerous studies confirming its substantial accuracy,the reliability of UBT results is often compromised by inherent limitations.These findings underscore the need for a rigorous statistical synthesis to clarify and reconcile the diagnostic accuracy of the UBT for the diagnosis of H.pylori infection.AIM To determine and compare the diagnostic accuracy of 13C-UBT and 14C-UBT for H.pylori infection in adult patients with dyspepsia.METHODS We conducted an independent search of the PubMed/MEDLINE,EMBASE,and Cochrane Central databases until April 2022.Our search included diagnostic accuracy studies that evaluated at least one of the index tests(^(13)C-UBT or ^(14)C-UBT)against a reference standard.We used the QUADAS-2 tool to assess the methodo-logical quality of the studies.We utilized the bivariate random-effects model to calculate sensitivity,specificity,positive and negative test likelihood ratios(LR+and LR-),as well as the diagnostic odds ratio(DOR),and their 95%confidence intervals.We conducted subgroup analyses based on urea dosing,time after urea administration,and assessment technique.To investigate a possible threshold effect,we conducted Spearman correlation analysis,and we generated summary receiver operating characteristic(SROC)curves to assess heterogeneity.Finally,we visually inspected a funnel plot and used Egger’s test to evaluate publication bias.endorsing both as reliable diagnostic tools in clinical practice.CONCLUSION In summary,our study has demonstrated that ^(13)C-UBT has been found to outperform the ^(14)C-UBT,making it the preferred diagnostic approach.Additionally,our results emphasize the significance of carefully considering urea dosage,assessment timing,and measurement techniques for both tests to enhance diagnostic precision.Nevertheless,it is crucial for researchers and clinicians to evaluate the strengths and limitations of our findings before implementing them in practice.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12065009 and 12365002)the Science and Technology Planning Project of Jiangxi Province of China(Grant Nos.20224ACB201006 and 20224BAB201023)。
文摘We investigate the non-Hermitian effects on quantum diffusion in a kicked rotor model where the complex kicking potential is quasi-periodically modulated in the time domain.The synthetic space with arbitrary dimension can be created by incorporating incommensurate frequencies in the quasi-periodical modulation.In the Hermitian case,strong kicking induces the chaotic diffusion in the four-dimension momentum space characterized by linear growth of mean energy.We find that the quantum coherence in deep non-Hermitian regime can effectively suppress the chaotic diffusion and hence result in the emergence of dynamical localization.Moreover,the extent of dynamical localization is dramatically enhanced by increasing the non-Hermitian parameter.Interestingly,the quasi-energies become complex when the non-Hermitian parameter exceeds a certain threshold value.The quantum state will finally evolve to a quasi-eigenstate for which the imaginary part of its quasi-energy is large most.The exponential localization length decreases with the increase of the non-Hermitian parameter,unveiling the underlying mechanism of the enhancement of the dynamical localization by nonHermiticity.
基金funded by the National Natural Science Foundation of China(No.32170788)National High Level Hospital Clinical Research Funding(No.2022-PUMCH-B-023)Beijing Natural Science Foundation(No.7232123).
文摘Objective To assess the diagnostic accuracy of bowel sound analysis for irritable bowel syndrome(IBS)with a systematic review and meta-analysis.Methods We searched MEDLINE,Embase,the Cochrane Library,Web of Science,and IEEE Xplore databases until September 2023.Cross-sectional and case-control studies on diagnostic accuracy of bowel sound analysis for IBS were identified.We estimated the pooled sensitivity,specificity,positive likelihood ratio,negative likeli-hood ratio,and diagnostic odds ratio with a 95% confidence interval(CI),and plotted a summary receiver operat-ing characteristic curve and evaluated the area under the curve.Results Four studies were included.The pooled diagnostic sensitivity,specificity,positive likelihood ratio,nega-tive likelihood ratio,and diagnostic odds ratio were 0.94(95%CI,0.87‒0.97),0.89(95%CI,0.81‒0.94),8.43(95%CI,4.81‒14.78),0.07(95%CI,0.03‒0.15),and 118.86(95%CI,44.18‒319.75),respectively,with an area under the curve of 0.97(95%CI,0.95‒0.98).Conclusions Computerized bowel sound analysis is a promising tool for IBS.However,limited high-quality data make the results'validity and applicability questionable.There is a need for more diagnostic test accuracy studies and better wearable devices for monitoring and analysis of IBS.
文摘Owing to the ubiquity of wireless networks and the popularity of WiFi infrastructures,received signal strength(RSS)-based indoor localization systems have received much attention.The placement of access points(APs)significantly influences localization accuracy and network access.However,the indoor scenario and network access are not fully considered in previous AP placement optimization methods.This study proposes a practical scenario modelingaided AP placement optimization method for improving localization accuracy and network access.In order to reduce the gap between simulation-based and field measurement-based AP placement optimization methods,we introduce an indoor scenario modeling and Gaussian process-based RSS prediction method.After that,the localization and network access metrics are implemented in the multiple objective particle swarm optimization(MOPSO)solution,Pareto front criterion and virtual repulsion force are applied to determine the optimal AP placement.Finally,field experiments demonstrate the effectiveness of the proposed indoor scenario modeling method and RSS prediction model.A thorough comparison confirms the localization and network access improvement attributed to the proposed anchor placement method.
文摘With the rapid development of smart phone,the location-based services(LBS)have received great attention in the past decades.Owing to the widespread use of WiFi and Bluetooth devices,Received Signal Strength Indication(RSSI)fingerprintbased localization method has obtained much development in both academia and industries.In this work,we introduce an efficient way to reduce the labor-intensive site survey process,which uses an UWB/IMU-assisted fingerprint construction(UAFC)and localization framework based on the principle of Automatic radio map generation scheme(ARMGS)is proposed to replace the traditional manual measurement.To be specific,UWB devices are employed to estimate the coordinates when the collector is moved in a reference point(RP).An anchor self-localization method is investigated to further reduce manual measurement work in a wide and complex environment,which is also a grueling,time-consuming process that is lead to artificial errors.Moreover,the measurements of IMU are incorporated into the UWB localization algorithm and improve the label accuracy in fingerprint.In addition,the weighted k-nearest neighbor(WKNN)algorithm is applied to online localization phase.Finally,filed experiments are carried out and the results confirm the effectiveness of the proposed approach.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62103375 and 62006106)the Zhejiang Provincial Philosophy and Social Science Planning Project(Grant No.22NDJC009Z)+1 种基金the Education Ministry Humanities and Social Science Foundation of China(Grant Nos.19YJCZH056 and 21YJC630120)the Natural Science Foundation of Zhejiang Province of China(Grant Nos.LY23F030003 and LQ21F020005).
文摘While progress has been made in information source localization,it has overlooked the prevalent friend and adversarial relationships in social networks.This paper addresses this gap by focusing on source localization in signed network models.Leveraging the topological characteristics of signed networks and transforming the propagation probability into effective distance,we propose an optimization method for observer selection.Additionally,by using the reverse propagation algorithm we present a method for information source localization in signed networks.Extensive experimental results demonstrate that a higher proportion of positive edges within signed networks contributes to more favorable source localization,and the higher the ratio of propagation rates between positive and negative edges,the more accurate the source localization becomes.Interestingly,this aligns with our observation that,in reality,the number of friends tends to be greater than the number of adversaries,and the likelihood of information propagation among friends is often higher than among adversaries.In addition,the source located at the periphery of the network is not easy to identify.Furthermore,our proposed observer selection method based on effective distance achieves higher operational efficiency and exhibits higher accuracy in information source localization,compared with three strategies for observer selection based on the classical full-order neighbor coverage.
基金supported by the Tomsk State University Competitiveness Improvement Program under Grant No.2.4.2.23 IG.
文摘Location awareness in wireless networks is essential for emergency services,navigation,gaming,and many other applications.This article presents a method for source localization based on measuring the amplitude-phase distribution of the field at the base station.The existing scatterers in the target area create unique scattered field interference at each source location.The unique field interference at each source location results in a unique field signature at the base station which is used for source localization.In the proposed method,the target area is divided into a grid with a step of less than half the wavelength.Each grid node is characterized by its field signature at the base station.Field signatures corresponding to all nodes are normalized and stored in the base station as fingerprints for source localization.The normalization of the field signatures avoids the need for time synchronization between the base station and the source.When a source transmits signals,the generated field signature at the base station is normalized and then correlated with the stored fingerprints.The maximum correlation value is given by the node to which the source is the closest.Numerical simulations and results of experiments on ultrasonic waves in the air show that the ultrasonic source is correctly localized using broadband field signatures with one base station and without time synchronization.The proposed method is potentially applicable for indoor localization and navigation of mobile robots.