子空间特征提取是人脸识别中的关键技术之一,结合局部Fisher判别分析技术和张量子空间分析技术的优点,本文提出了一种新的张量局部Fisher判别分析(Tensor local Fisher discriminant analysis,TLFDA)子空间降维技术.首先,通过对局部Fis...子空间特征提取是人脸识别中的关键技术之一,结合局部Fisher判别分析技术和张量子空间分析技术的优点,本文提出了一种新的张量局部Fisher判别分析(Tensor local Fisher discriminant analysis,TLFDA)子空间降维技术.首先,通过对局部Fisher判别技术进行分析,调整了其类间散度目标泛函,使算法的识别性能更高且时间复杂度更低;其次,引入张量型降维技术对输入数据进行双边投影变换而非单边投影,获得了更高的数据压缩率;最后,采用迭代更新的方法计算最优的变换矩阵.通过ORL和PIE两个人脸库验证了所提算法的有效性.展开更多
针对有标记故障样本不足和故障特征集维数过高的问题,提出基于正交半监督局部Fisher判别分析(Orthogonal semi-supervised local Fisher discriminant analysis,OSELF)的故障诊断方法。所提出的OSELF能够充分地利用蕴含于无标记故障样...针对有标记故障样本不足和故障特征集维数过高的问题,提出基于正交半监督局部Fisher判别分析(Orthogonal semi-supervised local Fisher discriminant analysis,OSELF)的故障诊断方法。所提出的OSELF能够充分地利用蕴含于无标记故障样本中的故障信息,避免了因有标记故障样本不足引起的过学习问题,同时采用正交迭代方式求解最优正交映射矩阵,克服现有方法无法得到正交映射矩阵的不足。正交映射矩阵的基矢量统计不相关,可有效地提高所得低维特征矢量的可辨识性。通过正交映射矩阵对故障样本集和新增样本进行维数约简,并将维数约简的结果输入粗糙优化k最近邻分类器(Coarse to fine k nearest neighbor classifier,CFKNNC)进行学习训练和故障识别。所提方法集成了OSELF在维数约简和CFKNNC在模式识别的优势,有效地提高了故障诊断的精度。通过齿轮箱故障模拟试验验证了该方法的有效性。展开更多
风力发电机组齿轮箱等旋转机械故障振动信号具有调制特征,因此有针对性地提出了一种基于局部均值分解(Local Mean Decomposition,LMD)和Fisher判别的故障诊断方法。首先对振动信号进行LMD分解,可得若干个的乘积函数(Product Function,PF...风力发电机组齿轮箱等旋转机械故障振动信号具有调制特征,因此有针对性地提出了一种基于局部均值分解(Local Mean Decomposition,LMD)和Fisher判别的故障诊断方法。首先对振动信号进行LMD分解,可得若干个的乘积函数(Product Function,PF)分量,以相关系数为依据进行PF分量筛选和信号重构,并对重构信号进行故障特征提取,然后以多组典型故障样本的特征量来训练得到Fisher判别式,最后利用判别式对待判样本进行分类,由判别结果可知滚动轴承的工作状态、故障部位及故障程度。分析从试验台采集的各类故障样本集和从某实际风场监测的数据,证明了所提取故障特征量的准确性,同时也验证了所提出方法在旋转机械故障诊断方面的有效性。展开更多
Complex processes often work with multiple operation regions, it is critical to develop effective monitoring approaches to ensure the safety of chemical processes. In this work, a discriminant local consistency Gaussi...Complex processes often work with multiple operation regions, it is critical to develop effective monitoring approaches to ensure the safety of chemical processes. In this work, a discriminant local consistency Gaussian mixture model(DLCGMM) for multimode process monitoring is proposed for multimode process monitoring by integrating LCGMM with modified local Fisher discriminant analysis(MLFDA). Different from Fisher discriminant analysis(FDA) that aims to discover the global optimal discriminant directions, MLFDA is capable of uncovering multimodality and local structure of the data by exploiting the posterior probabilities of observations within clusters calculated from the results of LCGMM. This may enable MLFDA to capture more meaningful discriminant information hidden in the high-dimensional multimode observations comparing to FDA. Contrary to most existing multimode process monitoring approaches, DLCGMM performs LCGMM and MFLDA iteratively, and the optimal subspaces with multi-Gaussianity and the optimal discriminant projection vectors are simultaneously achieved in the framework of supervised and unsupervised learning. Furthermore, monitoring statistics are established on each cluster that represents a specific operation condition and two global Bayesian inference-based fault monitoring indexes are established by combining with all the monitoring results of all clusters. The efficiency and effectiveness of the proposed method are evaluated through UCI datasets, a simulated multimode model and the Tennessee Eastman benchmark process.展开更多
文摘子空间特征提取是人脸识别中的关键技术之一,结合局部Fisher判别分析技术和张量子空间分析技术的优点,本文提出了一种新的张量局部Fisher判别分析(Tensor local Fisher discriminant analysis,TLFDA)子空间降维技术.首先,通过对局部Fisher判别技术进行分析,调整了其类间散度目标泛函,使算法的识别性能更高且时间复杂度更低;其次,引入张量型降维技术对输入数据进行双边投影变换而非单边投影,获得了更高的数据压缩率;最后,采用迭代更新的方法计算最优的变换矩阵.通过ORL和PIE两个人脸库验证了所提算法的有效性.
文摘针对有标记故障样本不足和故障特征集维数过高的问题,提出基于正交半监督局部Fisher判别分析(Orthogonal semi-supervised local Fisher discriminant analysis,OSELF)的故障诊断方法。所提出的OSELF能够充分地利用蕴含于无标记故障样本中的故障信息,避免了因有标记故障样本不足引起的过学习问题,同时采用正交迭代方式求解最优正交映射矩阵,克服现有方法无法得到正交映射矩阵的不足。正交映射矩阵的基矢量统计不相关,可有效地提高所得低维特征矢量的可辨识性。通过正交映射矩阵对故障样本集和新增样本进行维数约简,并将维数约简的结果输入粗糙优化k最近邻分类器(Coarse to fine k nearest neighbor classifier,CFKNNC)进行学习训练和故障识别。所提方法集成了OSELF在维数约简和CFKNNC在模式识别的优势,有效地提高了故障诊断的精度。通过齿轮箱故障模拟试验验证了该方法的有效性。
文摘风力发电机组齿轮箱等旋转机械故障振动信号具有调制特征,因此有针对性地提出了一种基于局部均值分解(Local Mean Decomposition,LMD)和Fisher判别的故障诊断方法。首先对振动信号进行LMD分解,可得若干个的乘积函数(Product Function,PF)分量,以相关系数为依据进行PF分量筛选和信号重构,并对重构信号进行故障特征提取,然后以多组典型故障样本的特征量来训练得到Fisher判别式,最后利用判别式对待判样本进行分类,由判别结果可知滚动轴承的工作状态、故障部位及故障程度。分析从试验台采集的各类故障样本集和从某实际风场监测的数据,证明了所提取故障特征量的准确性,同时也验证了所提出方法在旋转机械故障诊断方面的有效性。
基金Supported by the National Natural Science Foundation of China(61273167)
文摘Complex processes often work with multiple operation regions, it is critical to develop effective monitoring approaches to ensure the safety of chemical processes. In this work, a discriminant local consistency Gaussian mixture model(DLCGMM) for multimode process monitoring is proposed for multimode process monitoring by integrating LCGMM with modified local Fisher discriminant analysis(MLFDA). Different from Fisher discriminant analysis(FDA) that aims to discover the global optimal discriminant directions, MLFDA is capable of uncovering multimodality and local structure of the data by exploiting the posterior probabilities of observations within clusters calculated from the results of LCGMM. This may enable MLFDA to capture more meaningful discriminant information hidden in the high-dimensional multimode observations comparing to FDA. Contrary to most existing multimode process monitoring approaches, DLCGMM performs LCGMM and MFLDA iteratively, and the optimal subspaces with multi-Gaussianity and the optimal discriminant projection vectors are simultaneously achieved in the framework of supervised and unsupervised learning. Furthermore, monitoring statistics are established on each cluster that represents a specific operation condition and two global Bayesian inference-based fault monitoring indexes are established by combining with all the monitoring results of all clusters. The efficiency and effectiveness of the proposed method are evaluated through UCI datasets, a simulated multimode model and the Tennessee Eastman benchmark process.