This paper explores a highly accurate identification modeling approach for the ship maneuvering motion with fullscale trial. A multi-innovation gradient iterative(MIGI) approach is proposed to optimize the distance me...This paper explores a highly accurate identification modeling approach for the ship maneuvering motion with fullscale trial. A multi-innovation gradient iterative(MIGI) approach is proposed to optimize the distance metric of locally weighted learning(LWL), and a novel non-parametric modeling technique is developed for a nonlinear ship maneuvering system. This proposed method’s advantages are as follows: first, it can avoid the unmodeled dynamics and multicollinearity inherent to the conventional parametric model; second, it eliminates the over-learning or underlearning and obtains the optimal distance metric; and third, the MIGI is not sensitive to the initial parameter value and requires less time during the training phase. These advantages result in a highly accurate mathematical modeling technique that can be conveniently implemented in applications. To verify the characteristics of this mathematical model, two examples are used as the model platforms to study the ship maneuvering.展开更多
The groundwater potential map is an important tool for a sustainable water management and land use planning,particularly for agricultural countries like Vietnam.In this article,we proposed new machine learning ensembl...The groundwater potential map is an important tool for a sustainable water management and land use planning,particularly for agricultural countries like Vietnam.In this article,we proposed new machine learning ensemble techniques namely AdaBoost ensemble(ABLWL),Bagging ensemble(BLWL),Multi Boost ensemble(MBLWL),Rotation Forest ensemble(RFLWL)with Locally Weighted Learning(LWL)algorithm as a base classifier to build the groundwater potential map of Gia Lai province in Vietnam.For this study,eleven conditioning factors(aspect,altitude,curvature,slope,Stream Transport Index(STI),Topographic Wetness Index(TWI),soil,geology,river density,rainfall,land-use)and 134 wells yield data was used to create training(70%)and testing(30%)datasets for the development and validation of the models.Several statistical indices were used namely Positive Predictive Value(PPV),Negative Predictive Value(NPV),Sensitivity(SST),Specificity(SPF),Accuracy(ACC),Kappa,and Receiver Operating Characteristics(ROC)curve to validate and compare performance of models.Results show that performance of all the models is good to very good(AUC:0.75 to 0.829)but the ABLWL model with AUC=0.89 is the best.All the models applied in this study can support decision-makers to streamline the management of the groundwater and to develop economy not only of specific territories but also in other regions across the world with minor changes of the input parameters.展开更多
It is a challenging topic to develop an efficient algorithm for large scale classification problems in many applications of machine learning. In this paper, a hierarchical clustering and fixed- layer local learning (...It is a challenging topic to develop an efficient algorithm for large scale classification problems in many applications of machine learning. In this paper, a hierarchical clustering and fixed- layer local learning (HCFLL) based support vector machine(SVM) algorithm is proposed to deal with this problem. Firstly, HCFLL hierarchically dusters a given dataset into a modified clustering feature tree based on the ideas of unsupervised clustering and supervised clustering. Then it locally trains SVM on each labeled subtree at a fixed-layer of the tree. The experimental results show that compared with the existing popular algorithms such as core vector machine and decision.tree support vector machine, HCFLL can significantly improve the training and testing speeds with comparable testing accuracy.展开更多
In soft sensor field, just-in-time learning(JITL) is an effective approach to model nonlinear and time varying processes. However, most similarity criterions in JITL are computed in the input space only while ignoring...In soft sensor field, just-in-time learning(JITL) is an effective approach to model nonlinear and time varying processes. However, most similarity criterions in JITL are computed in the input space only while ignoring important output information, which may lead to inaccurate construction of relevant sample set. To solve this problem, we propose a novel supervised feature extraction method suitable for the regression problem called supervised local and non-local structure preserving projections(SLNSPP), in which both input and output information can be easily and effectively incorporated through a newly defined similarity index. The SLNSPP can not only retain the virtue of locality preserving projections but also prevent faraway points from nearing after projection,which endues SLNSPP with powerful discriminating ability. Such two good properties of SLNSPP are desirable for JITL as they are expected to enhance the accuracy of similar sample selection. Consequently, we present a SLNSPP-JITL framework for developing adaptive soft sensor, including a sparse learning strategy to limit the scale and update the frequency of database. Finally, two case studies are conducted with benchmark datasets to evaluate the performance of the proposed schemes. The results demonstrate the effectiveness of LNSPP and SLNSPP.展开更多
Artificial Intelligence (AI) is transforming organizational dynamics, and revolutionizing corporate leadership practices. This research paper delves into the question of how AI influences corporate leadership, examini...Artificial Intelligence (AI) is transforming organizational dynamics, and revolutionizing corporate leadership practices. This research paper delves into the question of how AI influences corporate leadership, examining both its advantages and disadvantages. Positive impacts of AI are evident in communication, feedback systems, tracking mechanisms, and decision-making processes within organizations. AI-powered communication tools, as exemplified by Slack, facilitate seamless collaboration, transcending geographical barriers. Feedback systems, like Adobe’s Performance Management System, employ AI algorithms to provide personalized development opportunities, enhancing employee growth. AI-based tracking systems optimize resource allocation, as exemplified by studies like “AI-Based Tracking Systems: Enhancing Efficiency and Accountability.” Additionally, AI-powered decision support, demonstrated during the COVID-19 pandemic, showcases the capability to navigate complex challenges and maintain resilience. However, AI adoption poses challenges in human resources, potentially leading to job displacement and necessitating upskilling efforts. Managing AI errors becomes crucial, as illustrated by instances like Amazon’s biased recruiting tool. Data privacy concerns also arise, emphasizing the need for robust security measures. The proposed solution suggests leveraging Local Machine Learning Models (LLMs) to address data privacy issues. Approaches such as federated learning, on-device learning, differential privacy, and homomorphic encryption offer promising strategies. By exploring the evolving dynamics of AI and leadership, this research advocates for responsible AI adoption and proposes LLMs as a potential solution, fostering a balanced integration of AI benefits while mitigating associated risks in corporate settings.展开更多
Local learning based soft sensing methods succeed in coping with time-varying characteristics of processes as well as nonlinearities in industrial plants. In this paper, a local partial least squares based soft sensin...Local learning based soft sensing methods succeed in coping with time-varying characteristics of processes as well as nonlinearities in industrial plants. In this paper, a local partial least squares based soft sensing method for multi-output processes is proposed to accomplish process states division and local model adaptation,which are two key steps in development of local learning based soft sensors. An adaptive way of partitioning process states without redundancy is proposed based on F-test, where unique local time regions are extracted.Subsequently, a novel anti-over-fitting criterion is proposed for online local model adaptation which simultaneously considers the relationship between process variables and the information in labeled and unlabeled samples. Case study is carried out on two chemical processes and simulation results illustrate the superiorities of the proposed method from several aspects.展开更多
Accurately forecasting ocean waves during typhoon events is extremely important in aiding the mitigation and minimization of their potential damage to the coastal infrastructure, and the protection of coastal communit...Accurately forecasting ocean waves during typhoon events is extremely important in aiding the mitigation and minimization of their potential damage to the coastal infrastructure, and the protection of coastal communities. However, due to the complex hydrological and meteorological interaction and uncertainties arising from different modeling systems, quantifying the uncertainties and improving the forecasting accuracy of modeled typhoon-induced waves remain challenging. This paper presents a practical approach to optimizing model-ensemble wave heights in an attempt to improve the accuracy of real-time typhoon wave forecasting. A locally weighted learning algorithm is used to obtain the weights for the wave heights computed by the WAVEWATCH III wave model driven by winds from four different weather models (model-ensembles). The optimized weights are subsequently used to calculate the resulting wave heights from the model-ensembles. The results show that the opti- mization is capable of capturing the different behavioral effects of the different weather models on wave generation. Comparison with the measurements at the selected wave buoy locations shows that the optimized weights, obtained through a training process, can significantly improve the accuracy of the forecasted wave heights over the standard mean values, particularly for typhoon-induced peak waves. The results also indicate that the algorithm is easy to imnlement and practieal for real-time wave forecasting.展开更多
Recently, Massive Open Online Courses(MOOCs) have become a major online learning methodology for millions of people worldwide. However, the dropout rates from several current MOOCs are high. Usually, dropout predictio...Recently, Massive Open Online Courses(MOOCs) have become a major online learning methodology for millions of people worldwide. However, the dropout rates from several current MOOCs are high. Usually, dropout prediction aims to predict whether a learner will exhibit learning behaviors during several consecutive days in the future. Therefore, the information related to the learning behaviors of a learner in several consecutive days should be considered. After in-depth analysis of the learning behavior patterns of the MOOC learners, this study reports that learners often exhibit similar learning behaviors on several consecutive days, i.e., the learning status of a learner for the subsequent day is likely to be similar to that for the previous day. Based on this characteristic of MOOC learning,this study proposes a new simple feature matrix for keeping information related to the local correlation of learning behaviors and a new Convolutional Neural Network(CNN) model for predicting the dropout. Extensive experimental validations illustrate that the local correlation of learning behaviors should not be neglected. The proposed CNN model considers this characteristic and improves the dropout prediction accuracy. Furthermore, the proposed model can be used to predict dropout temporally and early when sufficient data are collected.展开更多
In this paper, we propose a more efficient Bayesian network structure learning algorithm under the framework of score based local learning (SLL). Our algorithm significantly improves computational efficiency by rest...In this paper, we propose a more efficient Bayesian network structure learning algorithm under the framework of score based local learning (SLL). Our algorithm significantly improves computational efficiency by restricting the neighbors of each variable to a small subset of candidates and storing necessary information to uncover the spouses, at the same time guaranteeing to find the optimal neighbor set in the same sense as SLL. The algorithm is the- oretically sound in the sense that it is optimal in the limit of large sample size. Empirical results testify its improved speed without loss of quality in the learned structures.展开更多
Human action recognition is currently one of the most active research areas in computer vision. It has been widely used in many applications, such as intelligent surveillance, perceptual interface, and content-based v...Human action recognition is currently one of the most active research areas in computer vision. It has been widely used in many applications, such as intelligent surveillance, perceptual interface, and content-based video retrieval. However, some extrinsic factors are barriers for the development of action recognition; e.g., human actions may be observed from arbitrary camera viewpoints in realistic scene. Thus, view-invariant analysis becomes important for action recognition algorithms, and a number of researchers have paid much attention to this issue. In this paper, we present a multi-view learning approach to recognize human actions from different views. As most existing multi-view learning algorithms often suffer from the problem of lacking data adaptiveness in the nearest neighborhood graph construction procedure, a robust locally adaptive multi-view learning algorithm based on learning multiple local L 1-graphs is proposed. Moreover, an efficient iterative optimization method is proposed to solve the proposed objective function. Experiments on three public view-invariant action recognition datasets, i.e., ViHASi, IXMAS, and WVU, demonstrate data adaptiveness, effectiveness, and efficiency of our algorithm. More importantly, when the feature dimension is correctly selected (i.e., 〉60), the proposed algorithm stably outperforms state-of-the-art counterparts and obtains about 6% improvement in recognition accuracy on the three datasets.展开更多
In this paper,we propose a refined local learning scheme to reconstruct a high resolution(HR)face image from a low resolution(LR)observation.The contribution of this work is twofold.Firstly,multi-direction gradient fe...In this paper,we propose a refined local learning scheme to reconstruct a high resolution(HR)face image from a low resolution(LR)observation.The contribution of this work is twofold.Firstly,multi-direction gradient features are extracted to search the nearest neighbors for each image patch,then the non-negative matrix factorization(NMF)is used to reduce the complexity in weight calculation,and the initial HR embedding is estimated from the training pairs by preserving local geometry.Secondly,a global reconstruction constraint and post-processing by non-local filtering is incorporated into super-resolution(SR)reconstruction process to reduce the image artifacts and further improve the image visual quality.Experimental results show that the proposed algorithm improves the SR performance both in subjective and objective assessments compared with several existing methods.展开更多
Unlike the traditional fossil energy, wind, as the clean renewable energy, can reduce the emission of the greenhouse gas. To take full advantage of the environmental benefits of wind energy, wind power forecasting has...Unlike the traditional fossil energy, wind, as the clean renewable energy, can reduce the emission of the greenhouse gas. To take full advantage of the environmental benefits of wind energy, wind power forecasting has to be studied to overcome the troubles brought by the variable nature of wind. Power forecasting for regional wind farm groups is the problem that many power system operators care about. The high-dimensional feature sets with redundant information are frequently encountered when dealing with this problem. In this paper, two kinds of feature set construction methods are proposed which can achieve the proper feature set either by selecting the subsets or by transforming the original variables with specific combinations. The former method selects the subset according to the criterion of minimal-redundancy-maximal-relevance (mRMR), while the latter does so based on the method of principal component analysis (PCA). A locally weighted learning method is also proposed to utilize the processed feature set to produce the power forecast results. The proposed model is simple and easy to use with parameters optimized automatically. Finally, a case study of 28 wind farms in East China is provided to verify the effectiveness of the proposed method.展开更多
Fine-grained few-shot learning is a difficult task in image classification. The reason is that the discriminative features of fine-grained images are often located in local areas of the image, while most of the existi...Fine-grained few-shot learning is a difficult task in image classification. The reason is that the discriminative features of fine-grained images are often located in local areas of the image, while most of the existing few-shot learning image classification methods only use top-level features and adopt a single measure. In that way, the local features of the sample cannot be learned well. In response to this problem, ensemble relation network with multi-level measure(ERN-MM) is proposed in this paper. It adds the relation modules in the shallow feature space to compare the similarity between the samples in the local features, and finally integrates the similarity scores from the feature spaces to assign the label of the query samples. So the proposed method ERN-MM can use local details and global information of different grains. Experimental results on different fine-grained datasets show that the proposed method achieves good classification performance and also proves its rationality.展开更多
基金financially supported in part by the National High Technology Research and Development Program of China(863Program,Grant No.2015AA016404)the National Natural Science Foundation of China(Grant Nos.51109020,51179019 and 51779029)the Fundamental Research Program for Key Laboratory of the Education Department of Liaoning Province(Grant No.LZ2015006)
文摘This paper explores a highly accurate identification modeling approach for the ship maneuvering motion with fullscale trial. A multi-innovation gradient iterative(MIGI) approach is proposed to optimize the distance metric of locally weighted learning(LWL), and a novel non-parametric modeling technique is developed for a nonlinear ship maneuvering system. This proposed method’s advantages are as follows: first, it can avoid the unmodeled dynamics and multicollinearity inherent to the conventional parametric model; second, it eliminates the over-learning or underlearning and obtains the optimal distance metric; and third, the MIGI is not sensitive to the initial parameter value and requires less time during the training phase. These advantages result in a highly accurate mathematical modeling technique that can be conveniently implemented in applications. To verify the characteristics of this mathematical model, two examples are used as the model platforms to study the ship maneuvering.
基金funded by Vietnam National Foundation for Science and Technology Development(NAFOSTED)under grant number 105.08-2019.03.
文摘The groundwater potential map is an important tool for a sustainable water management and land use planning,particularly for agricultural countries like Vietnam.In this article,we proposed new machine learning ensemble techniques namely AdaBoost ensemble(ABLWL),Bagging ensemble(BLWL),Multi Boost ensemble(MBLWL),Rotation Forest ensemble(RFLWL)with Locally Weighted Learning(LWL)algorithm as a base classifier to build the groundwater potential map of Gia Lai province in Vietnam.For this study,eleven conditioning factors(aspect,altitude,curvature,slope,Stream Transport Index(STI),Topographic Wetness Index(TWI),soil,geology,river density,rainfall,land-use)and 134 wells yield data was used to create training(70%)and testing(30%)datasets for the development and validation of the models.Several statistical indices were used namely Positive Predictive Value(PPV),Negative Predictive Value(NPV),Sensitivity(SST),Specificity(SPF),Accuracy(ACC),Kappa,and Receiver Operating Characteristics(ROC)curve to validate and compare performance of models.Results show that performance of all the models is good to very good(AUC:0.75 to 0.829)but the ABLWL model with AUC=0.89 is the best.All the models applied in this study can support decision-makers to streamline the management of the groundwater and to develop economy not only of specific territories but also in other regions across the world with minor changes of the input parameters.
基金National Natural Science Foundation of China ( No. 61070033 )Fundamental Research Funds for the Central Universities,China( No. 2012ZM0061)
文摘It is a challenging topic to develop an efficient algorithm for large scale classification problems in many applications of machine learning. In this paper, a hierarchical clustering and fixed- layer local learning (HCFLL) based support vector machine(SVM) algorithm is proposed to deal with this problem. Firstly, HCFLL hierarchically dusters a given dataset into a modified clustering feature tree based on the ideas of unsupervised clustering and supervised clustering. Then it locally trains SVM on each labeled subtree at a fixed-layer of the tree. The experimental results show that compared with the existing popular algorithms such as core vector machine and decision.tree support vector machine, HCFLL can significantly improve the training and testing speeds with comparable testing accuracy.
基金Supported by the National Natural Science Foundation of China(61273160)the Fundamental Research Funds for the Central Universities(14CX06067A,13CX05021A)
文摘In soft sensor field, just-in-time learning(JITL) is an effective approach to model nonlinear and time varying processes. However, most similarity criterions in JITL are computed in the input space only while ignoring important output information, which may lead to inaccurate construction of relevant sample set. To solve this problem, we propose a novel supervised feature extraction method suitable for the regression problem called supervised local and non-local structure preserving projections(SLNSPP), in which both input and output information can be easily and effectively incorporated through a newly defined similarity index. The SLNSPP can not only retain the virtue of locality preserving projections but also prevent faraway points from nearing after projection,which endues SLNSPP with powerful discriminating ability. Such two good properties of SLNSPP are desirable for JITL as they are expected to enhance the accuracy of similar sample selection. Consequently, we present a SLNSPP-JITL framework for developing adaptive soft sensor, including a sparse learning strategy to limit the scale and update the frequency of database. Finally, two case studies are conducted with benchmark datasets to evaluate the performance of the proposed schemes. The results demonstrate the effectiveness of LNSPP and SLNSPP.
文摘Artificial Intelligence (AI) is transforming organizational dynamics, and revolutionizing corporate leadership practices. This research paper delves into the question of how AI influences corporate leadership, examining both its advantages and disadvantages. Positive impacts of AI are evident in communication, feedback systems, tracking mechanisms, and decision-making processes within organizations. AI-powered communication tools, as exemplified by Slack, facilitate seamless collaboration, transcending geographical barriers. Feedback systems, like Adobe’s Performance Management System, employ AI algorithms to provide personalized development opportunities, enhancing employee growth. AI-based tracking systems optimize resource allocation, as exemplified by studies like “AI-Based Tracking Systems: Enhancing Efficiency and Accountability.” Additionally, AI-powered decision support, demonstrated during the COVID-19 pandemic, showcases the capability to navigate complex challenges and maintain resilience. However, AI adoption poses challenges in human resources, potentially leading to job displacement and necessitating upskilling efforts. Managing AI errors becomes crucial, as illustrated by instances like Amazon’s biased recruiting tool. Data privacy concerns also arise, emphasizing the need for robust security measures. The proposed solution suggests leveraging Local Machine Learning Models (LLMs) to address data privacy issues. Approaches such as federated learning, on-device learning, differential privacy, and homomorphic encryption offer promising strategies. By exploring the evolving dynamics of AI and leadership, this research advocates for responsible AI adoption and proposes LLMs as a potential solution, fostering a balanced integration of AI benefits while mitigating associated risks in corporate settings.
基金Supported by the National Natural Science Foundation of China(61273160)the Fundamental Research Funds for the Central Universities(14CX06067A,13CX05021A)
文摘Local learning based soft sensing methods succeed in coping with time-varying characteristics of processes as well as nonlinearities in industrial plants. In this paper, a local partial least squares based soft sensing method for multi-output processes is proposed to accomplish process states division and local model adaptation,which are two key steps in development of local learning based soft sensors. An adaptive way of partitioning process states without redundancy is proposed based on F-test, where unique local time regions are extracted.Subsequently, a novel anti-over-fitting criterion is proposed for online local model adaptation which simultaneously considers the relationship between process variables and the information in labeled and unlabeled samples. Case study is carried out on two chemical processes and simulation results illustrate the superiorities of the proposed method from several aspects.
基金supported by the European Commission within FP7-THEME 6(Grant No.244104)the Natural Environment Research Council(NERC)of the UK(Grant No.NE/J005541/1)the Ministry of Science and Technology(MOST)of Taiwan(Grant No.MOST 104-2221-E-006-183)
文摘Accurately forecasting ocean waves during typhoon events is extremely important in aiding the mitigation and minimization of their potential damage to the coastal infrastructure, and the protection of coastal communities. However, due to the complex hydrological and meteorological interaction and uncertainties arising from different modeling systems, quantifying the uncertainties and improving the forecasting accuracy of modeled typhoon-induced waves remain challenging. This paper presents a practical approach to optimizing model-ensemble wave heights in an attempt to improve the accuracy of real-time typhoon wave forecasting. A locally weighted learning algorithm is used to obtain the weights for the wave heights computed by the WAVEWATCH III wave model driven by winds from four different weather models (model-ensembles). The optimized weights are subsequently used to calculate the resulting wave heights from the model-ensembles. The results show that the opti- mization is capable of capturing the different behavioral effects of the different weather models on wave generation. Comparison with the measurements at the selected wave buoy locations shows that the optimized weights, obtained through a training process, can significantly improve the accuracy of the forecasted wave heights over the standard mean values, particularly for typhoon-induced peak waves. The results also indicate that the algorithm is easy to imnlement and practieal for real-time wave forecasting.
基金partially supported by the National Natural Science Foundation of China (Nos. 61866007, 61363029, 61662014, 61763007, and U1811264)the Natural Science Foundation of Guangxi District (No. 2018GXNSFDA138006)+2 种基金Guangxi Key Laboratory of Trusted Software (No. KX201721)Humanities and Social Sciences Research Projects of the Ministry of Education (No. 17JDGC022)Chongqing Higher Education Reform Project (No. 183137)
文摘Recently, Massive Open Online Courses(MOOCs) have become a major online learning methodology for millions of people worldwide. However, the dropout rates from several current MOOCs are high. Usually, dropout prediction aims to predict whether a learner will exhibit learning behaviors during several consecutive days in the future. Therefore, the information related to the learning behaviors of a learner in several consecutive days should be considered. After in-depth analysis of the learning behavior patterns of the MOOC learners, this study reports that learners often exhibit similar learning behaviors on several consecutive days, i.e., the learning status of a learner for the subsequent day is likely to be similar to that for the previous day. Based on this characteristic of MOOC learning,this study proposes a new simple feature matrix for keeping information related to the local correlation of learning behaviors and a new Convolutional Neural Network(CNN) model for predicting the dropout. Extensive experimental validations illustrate that the local correlation of learning behaviors should not be neglected. The proposed CNN model considers this characteristic and improves the dropout prediction accuracy. Furthermore, the proposed model can be used to predict dropout temporally and early when sufficient data are collected.
文摘In this paper, we propose a more efficient Bayesian network structure learning algorithm under the framework of score based local learning (SLL). Our algorithm significantly improves computational efficiency by restricting the neighbors of each variable to a small subset of candidates and storing necessary information to uncover the spouses, at the same time guaranteeing to find the optimal neighbor set in the same sense as SLL. The algorithm is the- oretically sound in the sense that it is optimal in the limit of large sample size. Empirical results testify its improved speed without loss of quality in the learned structures.
基金Project supported by the National Natural Science Foundation of China(No.61572431)the National Key Technology R&D Program(No.2013BAH59F00)+1 种基金the Zhejiang Provincial Natural Science Foundation of China(No.LY13F020001)the Zhejiang Province Public Technology Applied Research Projects,China(No.2014C33090)
文摘Human action recognition is currently one of the most active research areas in computer vision. It has been widely used in many applications, such as intelligent surveillance, perceptual interface, and content-based video retrieval. However, some extrinsic factors are barriers for the development of action recognition; e.g., human actions may be observed from arbitrary camera viewpoints in realistic scene. Thus, view-invariant analysis becomes important for action recognition algorithms, and a number of researchers have paid much attention to this issue. In this paper, we present a multi-view learning approach to recognize human actions from different views. As most existing multi-view learning algorithms often suffer from the problem of lacking data adaptiveness in the nearest neighborhood graph construction procedure, a robust locally adaptive multi-view learning algorithm based on learning multiple local L 1-graphs is proposed. Moreover, an efficient iterative optimization method is proposed to solve the proposed objective function. Experiments on three public view-invariant action recognition datasets, i.e., ViHASi, IXMAS, and WVU, demonstrate data adaptiveness, effectiveness, and efficiency of our algorithm. More importantly, when the feature dimension is correctly selected (i.e., 〉60), the proposed algorithm stably outperforms state-of-the-art counterparts and obtains about 6% improvement in recognition accuracy on the three datasets.
基金the National Natural Science Foundation of China(Nos.61171165 and 60802039)the Natural Science Foundation of Jiangsu(No.BK2010488)+1 种基金the Qing Lan Project of Jiangsu Province"the Six Top Talents"of Jiangsu Province Grant(No.2012DZXX-36)
文摘In this paper,we propose a refined local learning scheme to reconstruct a high resolution(HR)face image from a low resolution(LR)observation.The contribution of this work is twofold.Firstly,multi-direction gradient features are extracted to search the nearest neighbors for each image patch,then the non-negative matrix factorization(NMF)is used to reduce the complexity in weight calculation,and the initial HR embedding is estimated from the training pairs by preserving local geometry.Secondly,a global reconstruction constraint and post-processing by non-local filtering is incorporated into super-resolution(SR)reconstruction process to reduce the image artifacts and further improve the image visual quality.Experimental results show that the proposed algorithm improves the SR performance both in subjective and objective assessments compared with several existing methods.
文摘Unlike the traditional fossil energy, wind, as the clean renewable energy, can reduce the emission of the greenhouse gas. To take full advantage of the environmental benefits of wind energy, wind power forecasting has to be studied to overcome the troubles brought by the variable nature of wind. Power forecasting for regional wind farm groups is the problem that many power system operators care about. The high-dimensional feature sets with redundant information are frequently encountered when dealing with this problem. In this paper, two kinds of feature set construction methods are proposed which can achieve the proper feature set either by selecting the subsets or by transforming the original variables with specific combinations. The former method selects the subset according to the criterion of minimal-redundancy-maximal-relevance (mRMR), while the latter does so based on the method of principal component analysis (PCA). A locally weighted learning method is also proposed to utilize the processed feature set to produce the power forecast results. The proposed model is simple and easy to use with parameters optimized automatically. Finally, a case study of 28 wind farms in East China is provided to verify the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(62176110,62111530146,61906080)Young Doctoral Fund of Education Department of Gansu Province(2021QB-038)。
文摘Fine-grained few-shot learning is a difficult task in image classification. The reason is that the discriminative features of fine-grained images are often located in local areas of the image, while most of the existing few-shot learning image classification methods only use top-level features and adopt a single measure. In that way, the local features of the sample cannot be learned well. In response to this problem, ensemble relation network with multi-level measure(ERN-MM) is proposed in this paper. It adds the relation modules in the shallow feature space to compare the similarity between the samples in the local features, and finally integrates the similarity scores from the feature spaces to assign the label of the query samples. So the proposed method ERN-MM can use local details and global information of different grains. Experimental results on different fine-grained datasets show that the proposed method achieves good classification performance and also proves its rationality.