The aim of this paper is to investigate the differentiability(Gateaux differentiabllity and subdifferentiability) of continuous convex functions on locally convex spaces and to study the behaviour of some important re...The aim of this paper is to investigate the differentiability(Gateaux differentiabllity and subdifferentiability) of continuous convex functions on locally convex spaces and to study the behaviour of some important results for this research area in locally convex spaces.展开更多
A locally convex space is said to be a Gateaux differentiability space (GDS) provided every continuous convex function defined on a nonempty convex open subset D of the space is densely Gateaux differentiable in .D.Th...A locally convex space is said to be a Gateaux differentiability space (GDS) provided every continuous convex function defined on a nonempty convex open subset D of the space is densely Gateaux differentiable in .D.This paper shows that the product of a GDS and a family of separable Prechet spaces is a GDS,and that the product of a GDS and an arbitrary locally convex space endowed with the weak topology is a GDS.展开更多
In this paper, we use the well known KKM type theorem for generalized convex spaces due to Park (Elements of the KKM theory for generalized convex spaces, Korean J. Comp. Appl. Math., 7(2000), 1-28) to obtain an a...In this paper, we use the well known KKM type theorem for generalized convex spaces due to Park (Elements of the KKM theory for generalized convex spaces, Korean J. Comp. Appl. Math., 7(2000), 1-28) to obtain an almost fixed point theorem for upper [resp., lower] semicontinuous multimaps in locally G-convex spaces, and then give a fixed point theorem for upper semicontinuous multimap with closed Γ-convex values.展开更多
This paper gives internal characterizations of some sequence covering compact images and compact covering compact images of paracompact locally compact spaces, which improve some results on compact images of locally...This paper gives internal characterizations of some sequence covering compact images and compact covering compact images of paracompact locally compact spaces, which improve some results on compact images of locally compact metric spaces.展开更多
A new class of generalized constrained multiobjective games is introduced and studied in locally FC-uniform spaces without convexity structure where the number of players may be finite or infinite and all payoff funct...A new class of generalized constrained multiobjective games is introduced and studied in locally FC-uniform spaces without convexity structure where the number of players may be finite or infinite and all payoff functions get their values in an infinite-dimensional space. By using a Himmelberg type fixed point theorem in locally FC-uniform spaces due to author, some existence theorems of weak Paxeto equilibria for the generalized constrained multiobjective games are established in locally FC-uniform spaces. These theorems improve, unify and generalize the corresponding results in recent literatures.展开更多
In this article, we introduce and study some new classes of multi-leader-follower generalized constrained multiobjective games in locally FC-uniform spaces where the number of leaders and followers may be finite or in...In this article, we introduce and study some new classes of multi-leader-follower generalized constrained multiobjective games in locally FC-uniform spaces where the number of leaders and followers may be finite or infinite and the objective functions of the followers obtain their values in infinite-dimensional spaces. Each leader has a constrained correspondence. By using a collective fixed point theorem in locally FC-uniform spaces due to author, some existence theorems of equilibrium points for the multi-leader-follower generalized constrained multiobjective games are established under nonconvex settings. These results generalize some corresponding results in recent literature.展开更多
In this note we obtain generalization of well known results of carbone and Conti,Sehgal and Singh and Tanimoto concerning the existence of best approximation and simultaneous best approximation of continuous Junctions...In this note we obtain generalization of well known results of carbone and Conti,Sehgal and Singh and Tanimoto concerning the existence of best approximation and simultaneous best approximation of continuous Junctions from the set up of a normed space to the case of a Hausdorff locally convex space.展开更多
First, the notions of the measure of noncompactness and condensing setvalued mappings are introduced in locally FC-uniform spaces without convexity structure. A new existence theorem of maximal elements of a family of...First, the notions of the measure of noncompactness and condensing setvalued mappings are introduced in locally FC-uniform spaces without convexity structure. A new existence theorem of maximal elements of a family of set-valued mappings involving condensing mappings is proved in locally FC-uniform spaces. As applications, some new equilibrium existence theorems of generalized game involving condensing mappings are established in locally FC-uniform spaces. These results improve and generalize some known results in literature to locally FC-uniform spaces. Some further applications of our results to the systems of generalized vector quasi-equilibrium problems will be given in a follow-up paper.展开更多
Some classes of generalized vector quasi-equilibrium problems ( in short, GVQEP) are introduced and studied in locally G-convex spaces which includes most of generalized vector equilibrium problems; generalized vector...Some classes of generalized vector quasi-equilibrium problems ( in short, GVQEP) are introduced and studied in locally G-convex spaces which includes most of generalized vector equilibrium problems; generalized vector variational inequality problems, quasi-equilibrium problems and quasi-variational inequality problems as special cases. First, an equilibrium existence theorem for one person games is proved in locally G-convex spaces.. As applications, some new existence theorems of solutions for the GVQEP are established in noncompact locally G-convex spaces. These results and argument methods are new and completely different from that in recent literature.展开更多
The purpose of this paper is to study complete space-like submanifolds with parallel mean curvature vector and flat normal bundle in a locally symmetric semi-defnite space satisfying some curvature conditions. We firs...The purpose of this paper is to study complete space-like submanifolds with parallel mean curvature vector and flat normal bundle in a locally symmetric semi-defnite space satisfying some curvature conditions. We first give an optimal estimate of the Laplacian of the squared norm of the second fundamental form for such submanifold. Furthermore, the totally umbilical submanifolds are characterized.展开更多
In this paper we focus ourselves on the positive cone of the locally solid Riesz spaces to characterize the fundamentality. From one example the article indicates that the fundamentality of the locally solid Riesz spa...In this paper we focus ourselves on the positive cone of the locally solid Riesz spaces to characterize the fundamentality. From one example the article indicates that the fundamentality of the locally solid Riesz space is independent from the Lebesgue property.展开更多
In this paper, we introduce some new systems of generalized vector quasi-variational inclusion problems and system of generalized vector ideal (resp., proper, Pareto, weak) quasi-optimization problems in locally FC-...In this paper, we introduce some new systems of generalized vector quasi-variational inclusion problems and system of generalized vector ideal (resp., proper, Pareto, weak) quasi-optimization problems in locally FC-uniform spaces without convexity structure. By using the KKM type theorem and Himmelberg type fixed point theorem proposed by the author, some new existence theorems of solutions for the systems of generalized vector quasi-variational inclusion problems are proved. As to its applications, we obtain some existence results of solutions for systems of generalized vector quasi-optimization problems.展开更多
Let (E,γ) be a locally convex space and E′ its conjugate space. AE′ be an equicontinuous set on (E,γ). In this paper,we show that for each sequence {f i}A and {x j}E, if {x j} converges to 0 in (E,γ), then we can...Let (E,γ) be a locally convex space and E′ its conjugate space. AE′ be an equicontinuous set on (E,γ). In this paper,we show that for each sequence {f i}A and {x j}E, if {x j} converges to 0 in (E,γ), then we can find a f 0∈E′ and extract subsequences {f n i } and {x n j } such that {f n i } converges to f 0 on {x n j } uniformly. If (E,γ) is metrizable,then we can show that the converse is also valid.展开更多
The complete space-like hypersurfaces with constant normal saclar curvature is discussed in a locally symmetric Lorentz space. A classified theorem is obtained by the operator L1 introduced by S Y Cheng and S T Yau [3].
In this paper we investigate generalized bi quasi variational inequalities in locally convex topological vector spaces. Motivated and inspired by the recent research work in this field,we establish several existence t...In this paper we investigate generalized bi quasi variational inequalities in locally convex topological vector spaces. Motivated and inspired by the recent research work in this field,we establish several existence theorems of solutions for generalized bi quasi variational inequalities,which are the extension and improvements of the earlier and recent results obtained previously by many authors including Sun and Ding [18],Chang and Zhang [23] and Zhang [24].展开更多
In this note, we consider the multipliers on weighted function spaces over totally disconnected locally compact abelian groups (Vilenkin groups). Firstly we show an (H1 ,L ) multiplier result. We also give an (Hap ,Ha...In this note, we consider the multipliers on weighted function spaces over totally disconnected locally compact abelian groups (Vilenkin groups). Firstly we show an (H1 ,L ) multiplier result. We also give an (Hap ,Hap) multiplier result under a similiar condition of Lu Yang type. In section 2, we obtain a result about the boundedness of multipliers on weighted Besov spaces.展开更多
In this paper, we study the characterization of f-Chebyshev radius and f-Chebyshev centers and the existence of f-Chebyshev centers in locally convex spaces.
By introducing the notions of L-spaces and L_r-spaces, a complete generalization of Kalton's closed graph theorem is obtained. It points out the class of L_r-spaces is the maximal class of range spaces for the clo...By introducing the notions of L-spaces and L_r-spaces, a complete generalization of Kalton's closed graph theorem is obtained. It points out the class of L_r-spaces is the maximal class of range spaces for the closed graph theorem when the class of domain spaces is the class of Mackey spaces with weakly * sequentially complete dual.Some examples are constructed showing that the class of L_r-spaces is strictly larger than the class of separable B_r-complete spaces.Some properties of L-spaces and L_r-spaces are discussed and the relations between B-complete (resp. B_r-complete) spaces and L-spaces (resp. L_r-spaces) are given.展开更多
Though atomic decomposition is a very useful tool for studying the boundedness on Hardy spaces for some sublinear operators,untill now,the boundedness of operators on weighted Hardy spaces in a multi-parameter setting...Though atomic decomposition is a very useful tool for studying the boundedness on Hardy spaces for some sublinear operators,untill now,the boundedness of operators on weighted Hardy spaces in a multi-parameter setting has been established only by almost orthogonality estimates.In this paper,we mainly establish the boundedness on weighted multi-parameter local Hardy spaces via atomic decomposition.展开更多
文摘The aim of this paper is to investigate the differentiability(Gateaux differentiabllity and subdifferentiability) of continuous convex functions on locally convex spaces and to study the behaviour of some important results for this research area in locally convex spaces.
基金Supported by the NSF of China (10071063 and 10471114)
文摘A locally convex space is said to be a Gateaux differentiability space (GDS) provided every continuous convex function defined on a nonempty convex open subset D of the space is densely Gateaux differentiable in .D.This paper shows that the product of a GDS and a family of separable Prechet spaces is a GDS,and that the product of a GDS and an arbitrary locally convex space endowed with the weak topology is a GDS.
文摘In this paper, we use the well known KKM type theorem for generalized convex spaces due to Park (Elements of the KKM theory for generalized convex spaces, Korean J. Comp. Appl. Math., 7(2000), 1-28) to obtain an almost fixed point theorem for upper [resp., lower] semicontinuous multimaps in locally G-convex spaces, and then give a fixed point theorem for upper semicontinuous multimap with closed Γ-convex values.
文摘This paper gives internal characterizations of some sequence covering compact images and compact covering compact images of paracompact locally compact spaces, which improve some results on compact images of locally compact metric spaces.
基金the Natural Science Foundation of Education Department of Sichuan Province of China(No.07ZA092)the Foundation of Taiwan Science Council
文摘A new class of generalized constrained multiobjective games is introduced and studied in locally FC-uniform spaces without convexity structure where the number of players may be finite or infinite and all payoff functions get their values in an infinite-dimensional space. By using a Himmelberg type fixed point theorem in locally FC-uniform spaces due to author, some existence theorems of weak Paxeto equilibria for the generalized constrained multiobjective games are established in locally FC-uniform spaces. These theorems improve, unify and generalize the corresponding results in recent literatures.
基金supported by the Scientific Research Fun of Sichuan Normal University(11ZDL01)the Sichuan Province Leading Academic Discipline Project(SZD0406)
文摘In this article, we introduce and study some new classes of multi-leader-follower generalized constrained multiobjective games in locally FC-uniform spaces where the number of leaders and followers may be finite or infinite and the objective functions of the followers obtain their values in infinite-dimensional spaces. Each leader has a constrained correspondence. By using a collective fixed point theorem in locally FC-uniform spaces due to author, some existence theorems of equilibrium points for the multi-leader-follower generalized constrained multiobjective games are established under nonconvex settings. These results generalize some corresponding results in recent literature.
文摘In this note we obtain generalization of well known results of carbone and Conti,Sehgal and Singh and Tanimoto concerning the existence of best approximation and simultaneous best approximation of continuous Junctions from the set up of a normed space to the case of a Hausdorff locally convex space.
基金the Natural Science Foundation of Sichuan Education Department of China (Nos.2003A081 and SZD0406)
文摘First, the notions of the measure of noncompactness and condensing setvalued mappings are introduced in locally FC-uniform spaces without convexity structure. A new existence theorem of maximal elements of a family of set-valued mappings involving condensing mappings is proved in locally FC-uniform spaces. As applications, some new equilibrium existence theorems of generalized game involving condensing mappings are established in locally FC-uniform spaces. These results improve and generalize some known results in literature to locally FC-uniform spaces. Some further applications of our results to the systems of generalized vector quasi-equilibrium problems will be given in a follow-up paper.
文摘Some classes of generalized vector quasi-equilibrium problems ( in short, GVQEP) are introduced and studied in locally G-convex spaces which includes most of generalized vector equilibrium problems; generalized vector variational inequality problems, quasi-equilibrium problems and quasi-variational inequality problems as special cases. First, an equilibrium existence theorem for one person games is proved in locally G-convex spaces.. As applications, some new existence theorems of solutions for the GVQEP are established in noncompact locally G-convex spaces. These results and argument methods are new and completely different from that in recent literature.
文摘The purpose of this paper is to study complete space-like submanifolds with parallel mean curvature vector and flat normal bundle in a locally symmetric semi-defnite space satisfying some curvature conditions. We first give an optimal estimate of the Laplacian of the squared norm of the second fundamental form for such submanifold. Furthermore, the totally umbilical submanifolds are characterized.
基金the Research Fund for the Doctoral Program of Higher Education(20010055013)
文摘In this paper we focus ourselves on the positive cone of the locally solid Riesz spaces to characterize the fundamentality. From one example the article indicates that the fundamentality of the locally solid Riesz space is independent from the Lebesgue property.
基金supported by the Natural Science Foundation of Sichuan Education Department of China(No. 07ZA092)the Sichuan Province Leading Academic Discipline Project (No. SZD0406)
文摘In this paper, we introduce some new systems of generalized vector quasi-variational inclusion problems and system of generalized vector ideal (resp., proper, Pareto, weak) quasi-optimization problems in locally FC-uniform spaces without convexity structure. By using the KKM type theorem and Himmelberg type fixed point theorem proposed by the author, some new existence theorems of solutions for the systems of generalized vector quasi-variational inclusion problems are proved. As to its applications, we obtain some existence results of solutions for systems of generalized vector quasi-optimization problems.
文摘Let (E,γ) be a locally convex space and E′ its conjugate space. AE′ be an equicontinuous set on (E,γ). In this paper,we show that for each sequence {f i}A and {x j}E, if {x j} converges to 0 in (E,γ), then we can find a f 0∈E′ and extract subsequences {f n i } and {x n j } such that {f n i } converges to f 0 on {x n j } uniformly. If (E,γ) is metrizable,then we can show that the converse is also valid.
基金Supported the NSF of the Education Department of Jiangsu Province(04KJD110192)
文摘The complete space-like hypersurfaces with constant normal saclar curvature is discussed in a locally symmetric Lorentz space. A classified theorem is obtained by the operator L1 introduced by S Y Cheng and S T Yau [3].
文摘In this paper we investigate generalized bi quasi variational inequalities in locally convex topological vector spaces. Motivated and inspired by the recent research work in this field,we establish several existence theorems of solutions for generalized bi quasi variational inequalities,which are the extension and improvements of the earlier and recent results obtained previously by many authors including Sun and Ding [18],Chang and Zhang [23] and Zhang [24].
文摘In this note, we consider the multipliers on weighted function spaces over totally disconnected locally compact abelian groups (Vilenkin groups). Firstly we show an (H1 ,L ) multiplier result. We also give an (Hap ,Hap) multiplier result under a similiar condition of Lu Yang type. In section 2, we obtain a result about the boundedness of multipliers on weighted Besov spaces.
基金Research supported by the National Science Foundation of P.R.China
文摘In this paper, we study the characterization of f-Chebyshev radius and f-Chebyshev centers and the existence of f-Chebyshev centers in locally convex spaces.
文摘By introducing the notions of L-spaces and L_r-spaces, a complete generalization of Kalton's closed graph theorem is obtained. It points out the class of L_r-spaces is the maximal class of range spaces for the closed graph theorem when the class of domain spaces is the class of Mackey spaces with weakly * sequentially complete dual.Some examples are constructed showing that the class of L_r-spaces is strictly larger than the class of separable B_r-complete spaces.Some properties of L-spaces and L_r-spaces are discussed and the relations between B-complete (resp. B_r-complete) spaces and L-spaces (resp. L_r-spaces) are given.
文摘Though atomic decomposition is a very useful tool for studying the boundedness on Hardy spaces for some sublinear operators,untill now,the boundedness of operators on weighted Hardy spaces in a multi-parameter setting has been established only by almost orthogonality estimates.In this paper,we mainly establish the boundedness on weighted multi-parameter local Hardy spaces via atomic decomposition.