In this paper we investigate generalized bi quasi variational inequalities in locally convex topological vector spaces. Motivated and inspired by the recent research work in this field,we establish several existence t...In this paper we investigate generalized bi quasi variational inequalities in locally convex topological vector spaces. Motivated and inspired by the recent research work in this field,we establish several existence theorems of solutions for generalized bi quasi variational inequalities,which are the extension and improvements of the earlier and recent results obtained previously by many authors including Sun and Ding [18],Chang and Zhang [23] and Zhang [24].展开更多
Some classes of generalized vector quasi-equilibrium problems ( in short, GVQEP) are introduced and studied in locally G-convex spaces which includes most of generalized vector equilibrium problems; generalized vector...Some classes of generalized vector quasi-equilibrium problems ( in short, GVQEP) are introduced and studied in locally G-convex spaces which includes most of generalized vector equilibrium problems; generalized vector variational inequality problems, quasi-equilibrium problems and quasi-variational inequality problems as special cases. First, an equilibrium existence theorem for one person games is proved in locally G-convex spaces.. As applications, some new existence theorems of solutions for the GVQEP are established in noncompact locally G-convex spaces. These results and argument methods are new and completely different from that in recent literature.展开更多
In this paper, we introduce and study a class of generalized vector quasivariational-like inequality problems, which includes generalized nonlinear vector variational inequality problems, generalized vector variationa...In this paper, we introduce and study a class of generalized vector quasivariational-like inequality problems, which includes generalized nonlinear vector variational inequality problems, generalized vector variational inequality problems and generalized vector variational-like inequality problems as special cases. We use the maximal element theorem with an escaping sequence to prove the existence results of a solution for generalized vector quasi-variational-like inequalities without any monotonicity conditions in the setting of locally convex topological vector space.展开更多
Theoretically speaking, there are four kinds of possibilities to define the random conjugate space of a random locally convex module. The purpose of this paper is to prove that among the four kinds there are only two ...Theoretically speaking, there are four kinds of possibilities to define the random conjugate space of a random locally convex module. The purpose of this paper is to prove that among the four kinds there are only two which are universally suitable for the current development of the theory of random conjugate spaces. In this process, we also obtain a somewhat surprising and crucial result: if the base (Ω,F, P) of a random normed module is nonatomic then the random normed module is a totally disconnected topological space when it is endowed with the locally L0-convex topology.展开更多
Several theorems on closed (resp. open) covering properties of H-spaces are obtained which improve and generalize the corresponding results of Sperner, Klee, Alexandroff-Pasynkoff, Berge, Ghouila-Houri, Danzer-Grunbau...Several theorems on closed (resp. open) covering properties of H-spaces are obtained which improve and generalize the corresponding results of Sperner, Klee, Alexandroff-Pasynkoff, Berge, Ghouila-Houri, Danzer-Grunbaum-Klee, Ky Fan, Shih-Tan, Horvath and Lassonde. As application an almost fixed point theorem for lower semi-continuous map in l.c.-spaces and a generalization of Tychonoffs fixed point theorem are proved in l.c.-spaces which improve those results of Ky Fan and Horvath.展开更多
Let (E,ξ)=ind(En,ξn) be an inductive limit of a sequence (En,ξn)n∈N of locally convex spaces and let every step (En,ξn) be endowed with a partial order by a pointed convex (solid) cone Sn. In the framew...Let (E,ξ)=ind(En,ξn) be an inductive limit of a sequence (En,ξn)n∈N of locally convex spaces and let every step (En,ξn) be endowed with a partial order by a pointed convex (solid) cone Sn. In the framework of inductive limits of partially ordered locally convex spaces, the notions of lastingly efficient points, lastingly weakly efficient points and lastingly globally properly efficient points are introduced. For several ordering cones, the notion of non-conflict is introduced. Under the requirement that the sequence (Sn)n∈N of ordering cones is non-conflicting, an existence theorem on lastingly weakly efficient points is presented. From this, an existence theorem on lastingly globally properly efficient points is deduced.展开更多
Let δ be a locally compact semigroup, w be a weight function on δ, and Ma (δ, ω) be the weighted semigroup algebra of δ. Let L0^∞(δ; Ma(δ, ω)) be the C*-algebra of all Ma(δ, w)-measurable functions ...Let δ be a locally compact semigroup, w be a weight function on δ, and Ma (δ, ω) be the weighted semigroup algebra of δ. Let L0^∞(δ; Ma(δ, ω)) be the C*-algebra of all Ma(δ, w)-measurable functions g on δ such that g/w vanishes at infinity. We introduce and study a strict topologyβ1 (δ, ω) on Ma(δ, ω) and show that the Banach space L0^∞(6;Ma(δ, ω) can be identified with the dual of Ma(δ, ω) endowed with 31(δ, ω). We finally investigate some properties of the locally convex topology β^1(δ, ω) on Mo(δ, ω). Keywords Foundation semigroup, locally convex space, weighted semigroup algebra, strict topology展开更多
文摘In this paper we investigate generalized bi quasi variational inequalities in locally convex topological vector spaces. Motivated and inspired by the recent research work in this field,we establish several existence theorems of solutions for generalized bi quasi variational inequalities,which are the extension and improvements of the earlier and recent results obtained previously by many authors including Sun and Ding [18],Chang and Zhang [23] and Zhang [24].
文摘Some classes of generalized vector quasi-equilibrium problems ( in short, GVQEP) are introduced and studied in locally G-convex spaces which includes most of generalized vector equilibrium problems; generalized vector variational inequality problems, quasi-equilibrium problems and quasi-variational inequality problems as special cases. First, an equilibrium existence theorem for one person games is proved in locally G-convex spaces.. As applications, some new existence theorems of solutions for the GVQEP are established in noncompact locally G-convex spaces. These results and argument methods are new and completely different from that in recent literature.
基金The NSF(60804065) of Chinathe Foundation(11A029,11A028) of China West Normal University+2 种基金the Fundamental Research Funds(13D016) of China West Normal Universitythe Key Project(211163) of Chinese Ministry of EducationSichuan Youth Science and Technology Foundation(2012JQ0032)
文摘In this paper, we introduce and study a class of generalized vector quasivariational-like inequality problems, which includes generalized nonlinear vector variational inequality problems, generalized vector variational inequality problems and generalized vector variational-like inequality problems as special cases. We use the maximal element theorem with an escaping sequence to prove the existence results of a solution for generalized vector quasi-variational-like inequalities without any monotonicity conditions in the setting of locally convex topological vector space.
基金the NNSF(10671094 )the Specialized Research Fund for the Doctor Program of Higher Education of China(20060319001)the NSF for the Higher Education of Anhui(KJ2008B242).
基金Supported by National Natural Science Foundation of China(Grant No.10871016)
文摘Theoretically speaking, there are four kinds of possibilities to define the random conjugate space of a random locally convex module. The purpose of this paper is to prove that among the four kinds there are only two which are universally suitable for the current development of the theory of random conjugate spaces. In this process, we also obtain a somewhat surprising and crucial result: if the base (Ω,F, P) of a random normed module is nonatomic then the random normed module is a totally disconnected topological space when it is endowed with the locally L0-convex topology.
基金This project partially supported by National Natural Science Foundation of ChinaThis work was partially supported by NSERC of Canada under grant A-8096
文摘Several theorems on closed (resp. open) covering properties of H-spaces are obtained which improve and generalize the corresponding results of Sperner, Klee, Alexandroff-Pasynkoff, Berge, Ghouila-Houri, Danzer-Grunbaum-Klee, Ky Fan, Shih-Tan, Horvath and Lassonde. As application an almost fixed point theorem for lower semi-continuous map in l.c.-spaces and a generalization of Tychonoffs fixed point theorem are proved in l.c.-spaces which improve those results of Ky Fan and Horvath.
基金supported by the National Natural Science Foundation of China(10871141)
文摘Let (E,ξ)=ind(En,ξn) be an inductive limit of a sequence (En,ξn)n∈N of locally convex spaces and let every step (En,ξn) be endowed with a partial order by a pointed convex (solid) cone Sn. In the framework of inductive limits of partially ordered locally convex spaces, the notions of lastingly efficient points, lastingly weakly efficient points and lastingly globally properly efficient points are introduced. For several ordering cones, the notion of non-conflict is introduced. Under the requirement that the sequence (Sn)n∈N of ordering cones is non-conflicting, an existence theorem on lastingly weakly efficient points is presented. From this, an existence theorem on lastingly globally properly efficient points is deduced.
文摘Let δ be a locally compact semigroup, w be a weight function on δ, and Ma (δ, ω) be the weighted semigroup algebra of δ. Let L0^∞(δ; Ma(δ, ω)) be the C*-algebra of all Ma(δ, w)-measurable functions g on δ such that g/w vanishes at infinity. We introduce and study a strict topologyβ1 (δ, ω) on Ma(δ, ω) and show that the Banach space L0^∞(6;Ma(δ, ω) can be identified with the dual of Ma(δ, ω) endowed with 31(δ, ω). We finally investigate some properties of the locally convex topology β^1(δ, ω) on Mo(δ, ω). Keywords Foundation semigroup, locally convex space, weighted semigroup algebra, strict topology