期刊文献+
共找到399篇文章
< 1 2 20 >
每页显示 20 50 100
Locally linear embedding-based seismic attribute extraction and applications 被引量:5
1
作者 刘杏芳 郑晓东 +2 位作者 徐光成 王玲 杨昊 《Applied Geophysics》 SCIE CSCD 2010年第4期365-375,400,401,共13页
How to extract optimal composite attributes from a variety of conventional seismic attributes to detect reservoir features is a reservoir predication key,which is usually solved by reducing dimensionality.Principle co... How to extract optimal composite attributes from a variety of conventional seismic attributes to detect reservoir features is a reservoir predication key,which is usually solved by reducing dimensionality.Principle component analysis(PCA) is the most widely-used linear dimensionality reduction method at present.However,the relationships between seismic attributes and reservoir features are non-linear,so seismic attribute dimensionality reduction based on linear transforms can't solve non-linear problems well,reducing reservoir prediction precision.As a new non-linear learning method,manifold learning supplies a new method for seismic attribute analysis.It can discover the intrinsic features and rules hidden in the data by computing low-dimensional,neighborhood-preserving embeddings of high-dimensional inputs.In this paper,we try to extract seismic attributes using locally linear embedding(LLE),realizing inter-horizon attributes dimensionality reduction of 3D seismic data first and discuss the optimization of its key parameters.Combining model analysis and case studies,we compare the dimensionality reduction and clustering effects of LLE and PCA,both of which indicate that LLE can retain the intrinsic structure of the inputs.The composite attributes and clustering results based on LLE better characterize the distribution of sedimentary facies,reservoir,and even reservoir fluids. 展开更多
关键词 attribute optimization dimensionality reduction locally linear embeddinglle manifold learning principle component analysis(PCA)
下载PDF
Fault Detection Based on Incremental Locally Linear Embedding for Satellite TX-I 被引量:1
2
作者 程月华 胡国飞 +2 位作者 陆宁云 姜斌 邢琰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第6期600-609,共10页
A fault detection method based on incremental locally linear embedding(LLE)is presented to improve fault detecting accuracy for satellites with telemetry data.Since conventional LLE algorithm cannot handle incremental... A fault detection method based on incremental locally linear embedding(LLE)is presented to improve fault detecting accuracy for satellites with telemetry data.Since conventional LLE algorithm cannot handle incremental learning,an incremental LLE method is proposed to acquire low-dimensional feature embedded in high-dimensional space.Then,telemetry data of Satellite TX-I are analyzed.Therefore,fault detection are performed by analyzing feature information extracted from the telemetry data with the statistical indexes T2 and squared prediction error(SPE)and SPE.Simulation results verify the fault detection scheme. 展开更多
关键词 incremental locally linear embedding(lle) telemetry data fault detection dimensionality reduction statistical indexes
下载PDF
基于RLLE算法的脑力负荷分类
3
作者 苏峥 曲洪权 +1 位作者 柳长安 庞丽萍 《科学技术与工程》 北大核心 2024年第14期5760-5766,共7页
近年来,随着人工智能领域技术的不断发展,脑机接口(brain-computer interface,BCI)吸引了更多学者的关注。实时监测高强度脑力工作者的脑力负荷水平并根据其任务做出动态调整是保护国家财产和操作人员安全的重要手段。研究表明由脑电图(... 近年来,随着人工智能领域技术的不断发展,脑机接口(brain-computer interface,BCI)吸引了更多学者的关注。实时监测高强度脑力工作者的脑力负荷水平并根据其任务做出动态调整是保护国家财产和操作人员安全的重要手段。研究表明由脑电图(electroencephalogram,EEG)提取的特征功率谱密度对于脑力负荷的变化比较敏感,但由于其维数过高,容易造成数据灾难。传统的主成分分析降维(principal component analysis,PCA)算法会损失数据的部分非线性特征。局部线性嵌入(locally linear embedding,LLE)是常用的非线性降维算法,但该算法对噪声的敏感性高,降维结果受参数影响较大。稳健局部线性嵌入算法RLLE(robust locally linear embedding),在LLE优化权重矩阵时添加了正则项优化,不仅增强了模型的抗噪能力,也解决了解模型过程中可能会出现的矩阵病态和奇异性问题。实验结果表明,经过RLLE降维后的数据使用支持向量机(support vector machine,SVM)分类精度普遍高于经过PCA和LLE的降维方式,具有更强的抗干扰能力。 展开更多
关键词 稳健局部线性嵌入 k值 脑力负荷 支持向量机
下载PDF
基于正交迭代的增量LLE算法 被引量:11
4
作者 朱明旱 罗大庸 +1 位作者 易励群 王一军 《电子学报》 EI CAS CSCD 北大核心 2009年第1期132-136,共5页
LLE(Locally Linear Embedding)算法是一种较好的流形学习算法,但它只能以批处理的方式进行.只要有新的样本加入,就必须重作该算法的全部内容,而原处理结果被全部丢弃.本文提出了一种基于正交迭代的增量LLE算法,能有效地利用前面的处理... LLE(Locally Linear Embedding)算法是一种较好的流形学习算法,但它只能以批处理的方式进行.只要有新的样本加入,就必须重作该算法的全部内容,而原处理结果被全部丢弃.本文提出了一种基于正交迭代的增量LLE算法,能有效地利用前面的处理结果,实现增量处理.实验表明该算法是有效的. 展开更多
关键词 局部线性嵌入 流形学习 正交迭代 增量
下载PDF
基于分维LLE和Fisher判别的故障诊断方法 被引量:13
5
作者 张伟 周维佳 李斌 《仪器仪表学报》 EI CAS CSCD 北大核心 2010年第2期325-333,共9页
针对非线性系统故障诊断难以解决的问题,通过改进的局部线性嵌入映射算法解决了非线性数据的特征映射问题。首先,通过线性拟合改进了基于分形维估计的内在维数的估计。然后,将故障状态与空间分布结合起来,通过确定数据点在空间超球内的... 针对非线性系统故障诊断难以解决的问题,通过改进的局部线性嵌入映射算法解决了非线性数据的特征映射问题。首先,通过线性拟合改进了基于分形维估计的内在维数的估计。然后,将故障状态与空间分布结合起来,通过确定数据点在空间超球内的分布完成故障的检测,在这个过程中将超球的确定与LLE算法中基于核函数的样本外数据扩展结合起来,大大减少了计算量,提高了算法的实时性。然后,利用Fisher判别分析进行故障匹配,通过计算最优的投影向量与历史故障数据投影向量的相似度的计算,完成故障识别,从而为复杂非线性系统故障诊断提供了一种新的有效的方法。 展开更多
关键词 局部线性嵌入(lle) 故障诊断 非线性降维 内在维数 FISHER判别
下载PDF
基于D-LLE算法的多特征植物叶片图像识别方法 被引量:23
6
作者 丁娇 梁栋 阎庆 《计算机工程与应用》 CSCD 北大核心 2015年第9期158-163,共6页
为了提高植物叶片图像识别的准确率,提出一种基于差异性值监督局部线性嵌入(D-LLE)算法的多特征植物叶片图像识别方法。该方法提取叶片的颜色、形状和纹理作为叶片多特征,在加权局部线性嵌入(WLLE)算法中引入样本的差异性值构成差异性... 为了提高植物叶片图像识别的准确率,提出一种基于差异性值监督局部线性嵌入(D-LLE)算法的多特征植物叶片图像识别方法。该方法提取叶片的颜色、形状和纹理作为叶片多特征,在加权局部线性嵌入(WLLE)算法中引入样本的差异性值构成差异性值监督LLE算法(D-LLE)对叶片高维特征进行降维,在低维空间采用最近邻分类器实现叶片的识别。该方法所用的叶片多特征比单一特征像素值更能描述叶片图像,同时差异性值能够充分挖掘样本的类别信息。基于实拍的叶片图像数据库的实验结果表明,该方法有效提高了叶片的识别精度。 展开更多
关键词 识别 叶片多特征 监督局部线性嵌入 加权局部线性嵌入 降维 差异性值
下载PDF
基于聚类和改进距离的LLE方法在数据降维中的应用 被引量:31
7
作者 王和勇 郑杰 +1 位作者 姚正安 李磊 《计算机研究与发展》 EI CSCD 北大核心 2006年第8期1485-1490,共6页
局部线性嵌入算法(locallylinearembedding,LLE)是解决降维的方法,针对LLE计算速度和近邻点个数K的选取,研究了该方法的扩展,提出了基于聚类和改进距离的LLE方法·基于聚类LLE方法大大缩减了计算LLE方法的时间;改进距离的LLE方法在... 局部线性嵌入算法(locallylinearembedding,LLE)是解决降维的方法,针对LLE计算速度和近邻点个数K的选取,研究了该方法的扩展,提出了基于聚类和改进距离的LLE方法·基于聚类LLE方法大大缩减了计算LLE方法的时间;改进距离的LLE方法在近邻点个数取值比较小时的情况下,可得到良好的效果,而原始的LLE方法要达到相同的效果,近邻点个数K的取值通常要大很多·同时,改进距离的LLE方法可以模糊近邻点个数选取·实验结果表明,基于聚类和改进距离相结合的LLE方法相比原来的LLE方法大大提高了降维速度和扩大了参数K的选取· 展开更多
关键词 多媒体数据库 图像检索 局部线性嵌入算法
下载PDF
基于LLE的彩色图象人脸检测 被引量:8
8
作者 吴俊强 周激流 何坤 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第4期796-800,共5页
分析了人脸与非人脸之间的本质区别,提出了运用局部线形嵌入(LLE)的非线性降维方法,解决非线性结构的高维数据(图象)低维表示的问题,实现了高维输入数据点映射到一个全局低维坐标系,同时保留了邻接点之间的空间关系(即高维空间的几何结... 分析了人脸与非人脸之间的本质区别,提出了运用局部线形嵌入(LLE)的非线性降维方法,解决非线性结构的高维数据(图象)低维表示的问题,实现了高维输入数据点映射到一个全局低维坐标系,同时保留了邻接点之间的空间关系(即高维空间的几何结构).此算法不仅能够有效地发现数据的非线性结构,同时还具有平移、旋转不变性.运用LLE算法对图象进行降维,再对降维后的数据运用支持向量机(SVM)分类器进行人脸和非人脸的分类.实验结果表明,该人脸检测方法测率较高,并且不受姿态、表情和光照的影响. 展开更多
关键词 局部线性嵌入 lle 非线性降维 支持向量机 人脸检测
下载PDF
基于LLE和BP神经网络的人脸识别 被引量:6
9
作者 吴俊强 周激流 +1 位作者 何坤 郎方年 《激光杂志》 CAS CSCD 北大核心 2006年第5期71-73,共3页
利用LLE非线性降维方法提取人脸特征,然后将提取出来的特征输入到BP神经网络进行训练得到人脸类间的判别信息,进行人脸识别。利用LLE降维方法既能够降低数据维数,减少运算量,又很好的保留了各类人脸样本的拓扑结构,避免人脸图像光照、... 利用LLE非线性降维方法提取人脸特征,然后将提取出来的特征输入到BP神经网络进行训练得到人脸类间的判别信息,进行人脸识别。利用LLE降维方法既能够降低数据维数,减少运算量,又很好的保留了各类人脸样本的拓扑结构,避免人脸图像光照、姿态等因素对人脸识别的影响。在ORL人脸库上的实验结果表明了,这种方法是有效的。 展开更多
关键词 局部线性嵌入:lle 非线性降维 BP神经网络 人脸识别
下载PDF
基于LLE和SVM的人像识别方法 被引量:13
10
作者 郭锋 刘丽丽 吕凝 《吉林大学学报(信息科学版)》 CAS 2008年第1期48-54,共7页
在人像识别方面,传统的特征提取方法大都是线性的,不能很好地保持样本的拓扑结构。支持向量机能提高学习的泛化能力,防止过学习,是一种很好的分类器。为此,提出一种增强的LLE(Locally Linear Em- bedding)和SVM(support Vector Machine... 在人像识别方面,传统的特征提取方法大都是线性的,不能很好地保持样本的拓扑结构。支持向量机能提高学习的泛化能力,防止过学习,是一种很好的分类器。为此,提出一种增强的LLE(Locally Linear Em- bedding)和SVM(support Vector Machine)结合的人像识别方法,采用PCA(Principal Component Analysis)与LLE相结合算法,对光照归一化处理过的人脸图像进行特征提取,利用SVM的分类机制对人脸图像样本集进行训练和识别。在ORL(Olivetti Research Laboratory)人脸数据库上实验表明,该算法稳健、快速,识别率达到了90%以上。 展开更多
关键词 人脸识别 局部线性嵌入 主成分分析法 支持向量机
下载PDF
自组织LLE算法及其在人脸识别中的应用 被引量:5
11
作者 冯海亮 李见为 黄鸿 《光学精密工程》 EI CAS CSCD 北大核心 2008年第9期1732-1737,共6页
提出了一种改进了的自组织LLE算法(SO—LLE),该算法不仅能自动确定数据点邻域值、减少运算量,而且能有效地发现嵌入于高维人脸图像的低维子流形。对SO-LLE算法进行了详细的理论分析,并应用多种数据集进行了仿真实验。在Yale和PIE... 提出了一种改进了的自组织LLE算法(SO—LLE),该算法不仅能自动确定数据点邻域值、减少运算量,而且能有效地发现嵌入于高维人脸图像的低维子流形。对SO-LLE算法进行了详细的理论分析,并应用多种数据集进行了仿真实验。在Yale和PIE人脸数据库的仿真实验结果表明:SO—LLE方法的平均识别率提高了5%~40%,有效地提高了人脸识别的性能。 展开更多
关键词 人脸识别 流形学习 局部线性嵌入 自组织映射
下载PDF
基于LLE-SVR的鸡蛋新鲜度可见/近红外光谱无损检测方法 被引量:16
12
作者 段宇飞 王巧华 +2 位作者 马美湖 芦茜 王彩云 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2016年第4期981-985,共5页
鸡蛋新鲜度是反映鸡蛋内部品质的一个重要指标。为了能够实现鸡蛋新鲜度的快速无损检测,利用微型光纤光谱仪采集鸡蛋550~950nm的透射率光谱曲线,与鸡蛋的哈夫单位值进行了定量分析。通过不同的预处理方式分别结合偏最小二乘回归(parti... 鸡蛋新鲜度是反映鸡蛋内部品质的一个重要指标。为了能够实现鸡蛋新鲜度的快速无损检测,利用微型光纤光谱仪采集鸡蛋550~950nm的透射率光谱曲线,与鸡蛋的哈夫单位值进行了定量分析。通过不同的预处理方式分别结合偏最小二乘回归(partial least squares regression,PLSR)与支持向量回归(support vector regression,SVR)建立模型,比较了不同模型的预测结果,发现一阶微分结合SVR能够实现较好地预测,且利用SVR建模要优于PLSR。为了提高运算效率,减少无用信息对建模的不良影响,分别利用线性降维主成分分析法(principal component analysis,PCA)与非线性降维局部线性嵌入(locally linear embedding,LLE)对一阶微分后的光谱数据降维,比较两种降维方法的预测效果,得出了LLE降维要优于PCA降维,其训练集和预测集的相关系数与均方根误差分别为92.2%,7.21和91.1%,8.80,训练集交叉验证的均方根误差相比减少了0.79。实验结果表明,利用局部线性嵌入结合支持向量回归进行非线性建模,能够提高鸡蛋新鲜度的预测能力,表明该方法对鸡蛋新鲜度的可见/近红外光谱检测可行。 展开更多
关键词 可见/近红外光谱 鸡蛋 支持向量回归 局部线性嵌入 新鲜度
下载PDF
一种基于LLE特征融合的故障识别方法 被引量:4
13
作者 胡建中 吴瑶 谢小欣 《中国机械工程》 EI CAS CSCD 北大核心 2013年第24期3345-3348,共4页
针对传统的故障识别中未能充分利用特征信息的问题,提出一种基于局部线性嵌入(LLE)特征融合的故障识别方法,通过初步提取信号时域和时频域的特征获得原始特征集,利用LLE算法对原始特征集进行二次特征提取,进一步融合两组特征集并使用KN... 针对传统的故障识别中未能充分利用特征信息的问题,提出一种基于局部线性嵌入(LLE)特征融合的故障识别方法,通过初步提取信号时域和时频域的特征获得原始特征集,利用LLE算法对原始特征集进行二次特征提取,进一步融合两组特征集并使用KNN算法进行故障识别。仿真信号数据分析与实际故障分析证明了所提方法对故障样本识别的可行性和有效性。 展开更多
关键词 特征提取 局部线性嵌入(lle) 特征融合 故障识别
下载PDF
NIR光谱的LLE-PLS非线性建模方法及应用 被引量:8
14
作者 杨辉华 覃锋 +5 位作者 王勇 吴云鸣 史晓浩 梁琼麟 王义明 罗国安 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2007年第10期1955-1958,共4页
传统的偏最小二乘(PLS)建模方法不能有效反映近红外(NIR)光谱与分析样本的物理化学性质之间存在的非线性关系。局部线性嵌入(LLE)是一种新的非线性降维方法,属于流形学习方法,它能有效地发现高维数据中的本真低维结构。结合LLE和PLS,提... 传统的偏最小二乘(PLS)建模方法不能有效反映近红外(NIR)光谱与分析样本的物理化学性质之间存在的非线性关系。局部线性嵌入(LLE)是一种新的非线性降维方法,属于流形学习方法,它能有效地发现高维数据中的本真低维结构。结合LLE和PLS,提出一种近红外光谱非线性建模的新方法,并用于建立丹参多酚酸盐柱层析过程中丹酚酸B含量的回归校正模型。该方法首先用LLE对NIR光谱数据降维,再用PLS建立校正模型。结果表明,与多元散射校正、一阶导等预处理方法结合PLS建模比较,参数优化后的LLE-PLS方法能更准确地预测丹酚酸B的含量,其交叉验证均方根误差为0.128mg.mL-1、决定系数为0.9988。基于NIR光谱及LLE-PLS建模,可实现丹参多酚酸盐柱层析过程的在线检测。 展开更多
关键词 局部线性嵌入 偏最小二乘 近红外光谱 丹参多酚酸盐
下载PDF
LLE重构和SVD分解的地震信号降噪方法 被引量:4
15
作者 崔业勤 高建国 丁国超 《计算机工程与应用》 CSCD 北大核心 2016年第15期266-270,共5页
针对现有地震信号降噪方法处理地震剖面的弯曲同相轴效果不佳,提出联合局部线性嵌入(LLE)和奇异值分解(SVD)方法的地震信号降噪技术。利用LLE的重构思想,对地震数据采样点用其近邻进行重构,实现非线性模式的弯曲同相轴的线性化处理,并... 针对现有地震信号降噪方法处理地震剖面的弯曲同相轴效果不佳,提出联合局部线性嵌入(LLE)和奇异值分解(SVD)方法的地震信号降噪技术。利用LLE的重构思想,对地震数据采样点用其近邻进行重构,实现非线性模式的弯曲同相轴的线性化处理,并去除一定程度的随机噪声;根据地震资料有效信号具有良好相关性的特性,采用SVD分解对LLE重构后的地震数据进行有效信号和噪声分离,剔除不相干的噪声,最终实现地震数据的随机噪声压制。在正演模型和真实地震资料上进行了实验,实验结果表明:与传统SVD方法相比,提出的方法很好地消除了随机噪声,有效信号基本上无丢失。 展开更多
关键词 局部线性嵌入 奇异值分解 重构 分解 地震信号 去噪
下载PDF
NIR光谱结合LLE-PLS建模用于安神补脑液提取过程分析的研究 被引量:25
16
作者 覃锋 杨辉华 +4 位作者 吕琳昂 师涛 梁琼麟 王义明 罗国安 《中成药》 CAS CSCD 北大核心 2008年第10期1465-1468,共4页
目的:探讨安神补脑液提取过程近红外(NIR)光谱分析的可行性及其方法。方法:提出NIR光谱建模的局部线性嵌入(LLE)-偏最小二乘(PLS)方法,该方法首先用LLE对NIR光谱数据降维,再用PLS建立校正模型。结果:参数优化后的LLE-PLS,二苯乙烯苷留-... 目的:探讨安神补脑液提取过程近红外(NIR)光谱分析的可行性及其方法。方法:提出NIR光谱建模的局部线性嵌入(LLE)-偏最小二乘(PLS)方法,该方法首先用LLE对NIR光谱数据降维,再用PLS建立校正模型。结果:参数优化后的LLE-PLS,二苯乙烯苷留-法交叉验证均方根误差(RMSECV)为0.0457mg/mL、决定系数(R2)为0.9673,淫羊藿苷RMSECV为0.0333mg/mL、R2为0.9809,均优于常规的PLS建模方法。结论:基于NIR光谱和LLE-PLS方法可实现安神补脑液提取过程的在线分析。 展开更多
关键词 安神补脑液 质量控制 近红外光谱 局部线性嵌入 偏最小二乘
下载PDF
基于可变k近邻LLE数据降维的图像检索方法 被引量:10
17
作者 李勇 陈贺新 +2 位作者 赵刚 孙中华 陈绵书 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2008年第4期946-949,共4页
在基于内容的图像检索中,其计算复杂度随着描述图像内容的特征向量的维数的增加而急剧增加,而应用局部嵌入算法(LLE)进行数据降维时,需要确定近邻点k的个数。根据图像特征在原空间的分布情况,提出了一种可变k近邻LLE的数据降维方法,使... 在基于内容的图像检索中,其计算复杂度随着描述图像内容的特征向量的维数的增加而急剧增加,而应用局部嵌入算法(LLE)进行数据降维时,需要确定近邻点k的个数。根据图像特征在原空间的分布情况,提出了一种可变k近邻LLE的数据降维方法,使得降维后的特征向量有效地保持了其在高维空间中的拓扑结构。实验结果表明,提出的可变k近邻LLE数据降维方法在基于内容的图像检索中有较高的检索准确率。 展开更多
关键词 信息处理技术 局部嵌入算法 可变k近邻 数据降维
下载PDF
基于聚类选择k近邻的LLE算法及故障检测 被引量:11
18
作者 薄翠梅 韩晓春 +1 位作者 易辉 李俊 《化工学报》 EI CAS CSCD 北大核心 2016年第3期925-930,共6页
针对化工过程在多种运行模式下多种流形结构具有不同最优近邻数问题,提出了基于聚类选择k近邻的局部线性嵌入(LLE)过程监控方法。使用LLE算法提取高维数据的低维子流形,通过局部线性回归得到高维数据空间到特征空间的映射矩阵;选择Silho... 针对化工过程在多种运行模式下多种流形结构具有不同最优近邻数问题,提出了基于聚类选择k近邻的局部线性嵌入(LLE)过程监控方法。使用LLE算法提取高维数据的低维子流形,通过局部线性回归得到高维数据空间到特征空间的映射矩阵;选择Silhouette指标作为聚类有效性指标评估嵌入空间样本信息的相似性,进而确定最优近邻数,根据映射矩阵构建故障监控统计量及其控制限,进行故障检测。最后将所提算法与其他经典算法应用于TE化工过程对比分析,验证了算法的有效性。 展开更多
关键词 局部线性嵌入 最近邻数 子流形 故障检测 聚类指标
下载PDF
基于高光谱图像技术的苹果粉质化LLE-SVM分类 被引量:13
19
作者 赵桂林 朱启兵 黄敏 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2010年第10期2739-2743,共5页
苹果粉质化程度是衡量其内部品质的一个重要因素,采用了高光谱散射图像技术进行苹果粉质化的无损检测。针对高光谱散射图像数据量大的特点,提出了局部线性嵌入(local linear embedded,LLE)和支持向量机(support vector machine,SVM)相... 苹果粉质化程度是衡量其内部品质的一个重要因素,采用了高光谱散射图像技术进行苹果粉质化的无损检测。针对高光谱散射图像数据量大的特点,提出了局部线性嵌入(local linear embedded,LLE)和支持向量机(support vector machine,SVM)相结合的用于检测苹果粉质化的新分类方法。LLE是一种通过局部线性关系的联合来揭示全局非线性结构的非线性降维方法,能有效计算高维输入数据在低维空间的嵌入流形。对降维后的高光谱数据采用SVM进行分类。将LLE-SVM分类方法与传统的SVM分类方法比较,仿真结果表明,对高光谱数据而言,用LLE-SVM得到的训练精度高于单纯使用SVM的训练精度;降维前后,分类器的测试精度变化不大,波动范围不超过5%。LLE-SVM为高光谱散射图像技术进行苹果粉质化无损检测提供了一个有效的分类方法。 展开更多
关键词 粉质化 高光谱散射图像技术 局部线性嵌入 非线性降维 支持向量机
下载PDF
基于Fisher变换的植物叶片图像识别监督LLE算法 被引量:14
20
作者 阎庆 梁栋 张晶晶 《农业机械学报》 EI CAS CSCD 北大核心 2012年第9期179-183,共5页
提出一种基于Fisher投影的监督LLE方法,应用于植物叶片图像识别中。该方法利用Fisher投影距离取代样本的测地距离,并以此为基础计算样本的权值,加入LLE算法的代价函数中。该方法克服了传统LLE算法无监督学习不适应分类问题的缺陷,在抑... 提出一种基于Fisher投影的监督LLE方法,应用于植物叶片图像识别中。该方法利用Fisher投影距离取代样本的测地距离,并以此为基础计算样本的权值,加入LLE算法的代价函数中。该方法克服了传统LLE算法无监督学习不适应分类问题的缺陷,在抑制噪声点影响的同时可以更好地挖掘样本的类别信息,提高叶片的分类精度。基于实拍植物叶片图像数据库的实验结果证明,该算法的平均识别率达到92.36%。 展开更多
关键词 植物叶片 识别 特征提取 监督局部线性嵌入 流形学习 FISHER变换
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部