期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Adaptive Locally Weighted Projection Regression Method for Uncertainty Quantification
1
作者 Peng Chen Nicholas Zabaras 《Communications in Computational Physics》 SCIE 2013年第9期851-878,共28页
We develop an efficient,adaptive locally weighted projection regression(ALWPR)framework for uncertainty quantification(UQ)of systems governed by ordinary and partial differential equations.The algorithm adaptively sel... We develop an efficient,adaptive locally weighted projection regression(ALWPR)framework for uncertainty quantification(UQ)of systems governed by ordinary and partial differential equations.The algorithm adaptively selects the new input points with the largest predictive variance and decides when and where to add new localmodels.It effectively learns the local features and accurately quantifies the uncertainty in the prediction of the statistics.The developed methodology provides predictions and confidence intervals at any query input and can dealwithmulti-output cases.Numerical examples are presented to show the accuracy and efficiency of the ALWPR framework including problems with non-smooth local features such as discontinuities in the stochastic space. 展开更多
关键词 locally weighted projection regression MULTI-OUTPUT adaptivity uncertainty quantification
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部