In order to enhance the location estimation performance of mobile station(MS)tracking and positioning, a new method of mobile location optimal estimation based on the federated filtering structure and the simplified...In order to enhance the location estimation performance of mobile station(MS)tracking and positioning, a new method of mobile location optimal estimation based on the federated filtering structure and the simplified unscented Kalman filter (UKF) is presented. The proposed algorithm uses the Singer mobile statement model as the reference system, and the simplified UKF as the subfilters. The subfilters receive the two groups of independently detected time difference of arrival (TDOA) measurement inputs and Doppler measurement inputs, and produce local estimation outputs to the main estimator. Then the main estimator performs the optimal fusion of the local estimation outputs according to the scalar weighted rule, and a global optimal or suboptimal estimation result is achieved. Finally the main estimator gives feedback and reset information to the subfilters and the reference system for next step estimation. In the simulations, the estimation performance of the proposed algorithm is evaluated and compared with the simplified UKF method with TDOA or Doppler measurement alone. The simulation results demonstrate that the proposed algorithm can effectively reduce the location estimation error and variance of the MS, and has favorable performance in both root mean square error(RMSE) and mean error cumulative distribution function(CDF).展开更多
In this study,a machine vision-based pattern matching technique was applied to estimate the location of an autonomous driving robot and perform 3D tunnel mapping in an underground mine environment.The autonomous drivi...In this study,a machine vision-based pattern matching technique was applied to estimate the location of an autonomous driving robot and perform 3D tunnel mapping in an underground mine environment.The autonomous driving robot continuously detects the wall of the tunnel in the horizontal direction using the light detection and ranging(Li DAR)sensor and performs pattern matching by recognizing the shape of the tunnel wall.The proposed method was designed to measure the heading of the robot by fusion with the inertial measurement units sensor according to the pattern matching accuracy;it is combined with the encoder sensor to estimate the location of the robot.In addition,when the robot is driving,the vertical direction of the underground mine is scanned through the vertical Li DAR sensor and stacked to create a 3D map of the underground mine.The performance of the proposed method was superior to that of previous studies;the mean absolute error achieved was 0.08 m for the X-Y axes.A root mean square error of 0.05 m^(2)was achieved by comparing the tunnel section maps that were created by the autonomous driving robot to those of manual surveying.展开更多
A novel numerical algorithm for fault location estimation of single-phase-to-earth fault on EHV transmission lines is presented in this paper. The method is based on one-terminal voltage and current data and is used i...A novel numerical algorithm for fault location estimation of single-phase-to-earth fault on EHV transmission lines is presented in this paper. The method is based on one-terminal voltage and current data and is used in a procedure that provides the automatic determination of faulted types and phases, rather than requires engineer to specify them. The loop and nodal equations comparing the faulted phase to non-fauhed phases of multi-parallel lines are introduced in the fauh location estimation models, in which source impedance of remote end is not involved. Precise algorithms of locating fault are derived. The effect of load flow and fauh resistance, on the location accuracy, are effectively eliminated. The algorithms are demonstrated by digital computer simulations.展开更多
The tremendous performance gain of heterogeneous networks(Het Nets) is at the cost of complicated resource allocation. Considering information security, the resource allocation for Het Nets becomes much more challengi...The tremendous performance gain of heterogeneous networks(Het Nets) is at the cost of complicated resource allocation. Considering information security, the resource allocation for Het Nets becomes much more challenging and this is the focus of this paper. In this paper, the eavesdropper is hidden from the macro base stations. To relax the unpractical assumption on the channel state information on eavesdropper, a localization based algorithm is first given. Then a joint resource allocation algorithm is proposed in our work, which simultaneously considers physical layer security, cross-tier interference and joint optimization of power and subcarriers under fairness requirements. It is revealed in our work that the considered optimization problem can be efficiently solved relying on convex optimization theory and the Lagrangian dual decomposition method is exploited to solve the considered problem effectively. Moreover, in each iteration the closed-form optimal resource allocation solutions can be obtained based on the Karush-Kuhn-Tucker(KKT) conditions. Finally, the simulation results are given to show the performance advantages of the proposed algorithm.展开更多
For indoor location estimation based on received signal strength( RSS) in wireless local area networks( WLAN),in order to reduce the influence of noise on the positioning accuracy,a large number of RSS should be colle...For indoor location estimation based on received signal strength( RSS) in wireless local area networks( WLAN),in order to reduce the influence of noise on the positioning accuracy,a large number of RSS should be collected in offline phase. Therefore,collecting training data with positioning information is time consuming which becomes the bottleneck of WLAN indoor localization. In this paper,the traditional semisupervised learning method based on k-NN and ε-NN graph for reducing collection workload of offline phase are analyzed,and the result shows that the k-NN or ε-NN graph are sensitive to data noise,which limit the performance of semi-supervised learning WLAN indoor localization system. Aiming at the above problem,it proposes a l1-graph-algorithm-based semi-supervised learning( LG-SSL) indoor localization method in which the graph is built by l1-norm algorithm. In our system,it firstly labels the unlabeled data using LG-SSL and labeled data to build the Radio Map in offline training phase,and then uses LG-SSL to estimate user's location in online phase. Extensive experimental results show that,benefit from the robustness to noise and sparsity ofl1-graph,LG-SSL exhibits superior performance by effectively reducing the collection workload in offline phase and improving localization accuracy in online phase.展开更多
Mobile location using angle of arrival (AOA) measurements has received considerable attention. This paper presents an approximation of maximum likelihood estimator (MLE) for localizing a source based on AOA measur...Mobile location using angle of arrival (AOA) measurements has received considerable attention. This paper presents an approximation of maximum likelihood estimator (MLE) for localizing a source based on AOA measurements. By introducing an intermediate variable, the nonlinear equations relating AOA estimates can be transformed into a set of equations which are linear in the unknown parameters. It is an approximate realization of the MLE. Simulations show that the proposed algorithm outperforms the previous contribution.展开更多
An accurate numerical algorithm for three-line fault involving different phases from each of two-parallel lines is presented. It is based on one-terminal voltage and current data. The loop and nodel equations comparin...An accurate numerical algorithm for three-line fault involving different phases from each of two-parallel lines is presented. It is based on one-terminal voltage and current data. The loop and nodel equations comparing faulted phase to non-faulted phase of two-parallel lines are introduced in the fault location estimation modal, in which the faulted impedance of remote end is not involved. The effect of load flow and fault resistance on the accuracy of fault location are effectively eliminated, therefore an accurate algorithm of locating fault is derived. The algorithm is demonstrated by digital computer simulations and the results show that errors in locating fault are less than 1%.展开更多
A novel numerical algorithm of fault location estimation for four-line fault without ground connection involving phases from each of the parallel lines is presented in this paper. It is based on one-terminal voltage a...A novel numerical algorithm of fault location estimation for four-line fault without ground connection involving phases from each of the parallel lines is presented in this paper. It is based on one-terminal voltage and current data. The loop and nodal equations comparing faulted phase to non-faulted phase of two-parallel lines are introduced in the fault location estimation model, in which the source impedance of a remote end is not involved. The effects of load flow and fault resistance on the accuracy of fault location are effectively eliminated, therefore a precise algorithm of locating fault is derived. The algorithm is demonstrated by digital computer simulations.展开更多
Target tracking is one typical application of visual servoing technology. It is still a difficult task to track high speed target with current visual servo system. The improvement of visual servoing scheme is strongly...Target tracking is one typical application of visual servoing technology. It is still a difficult task to track high speed target with current visual servo system. The improvement of visual servoing scheme is strongly required. A position-based visual servo parallel system is presented for tracking target with high speed. A local Frenet frame is assigned to the sampling point of spatial trajectory. Position estimation is formed by the differential features of intrinsic geometry, and orientation estimation is formed by homogenous transformation. The time spent for searching and processing can be greatly reduced by shifting the window according to features location prediction. The simulation results have demonstrated the ability of the system to track spatial moving object.展开更多
Location based social networks( LBSNs) provide location specific data generated from smart phone into online social networks thus people can share their points of interest( POIs). POI collections are complex and c...Location based social networks( LBSNs) provide location specific data generated from smart phone into online social networks thus people can share their points of interest( POIs). POI collections are complex and can be influenced by various factors,such as user preferences,social relationships and geographical influence. Therefore,recommending new locations in LBSNs requires to take all these factors into consideration. However,one problem is how to determine optimal weights of influencing factors in an algorithm in which these factors are combined. The user similarity can be obtained from the user check-in data,or from the user friend information,or based on the different geographical influences on each user's check-in activities. In this paper,we propose an algorithm that calculates the user similarity based on check-in records and social relationships,using a proposed weighting function to adjust the weights of these two kinds of similarities based on the geographical distance between users. In addition,a non-parametric density estimation method is applied to predict the unique geographical influence on each user by getting the density probability plot of the distance between every pair of user's check-in locations. Experimental results,using foursquare datasets,have shown that comparisons between the proposed algorithm and the other five baseline recommendation algorithms in LBSNs demonstrate that our proposed algorithm is superior in accuracy and recall,furthermore solving the sparsity problem.展开更多
Wireless local area networks (WLAN) localization based on received signal strength is becoming an important enabler of location based services. Limited efficiency and accuracy are disadvantages to the deterministic lo...Wireless local area networks (WLAN) localization based on received signal strength is becoming an important enabler of location based services. Limited efficiency and accuracy are disadvantages to the deterministic location estimation techniques. The probabilistic techniques show their good accuracy but cost more computation overhead. A Gaussian mixture model based on clustering technique was presented to improve location determination efficiency. The proposed clustering algorithm reduces the number of candidate locations from the whole area to a cluster. Within a cluster, an improved nearest neighbor algorithm was used to estimate user location using signal strength from more access points. Experiments show that the location estimation time is greatly decreased while high accuracy can still be achieved.展开更多
This paper presents fault detection,classification,and location for a PV-Wind-based DC ring microgrid in the MATLAB/SIMULINK platform.Initially,DC fault signals are collected from local measurements to examine the out...This paper presents fault detection,classification,and location for a PV-Wind-based DC ring microgrid in the MATLAB/SIMULINK platform.Initially,DC fault signals are collected from local measurements to examine the outcomes of the proposed system.Accurate detection is carried out for all faults,(i.e.,cable and arc faults)under two cases of fault resistance and distance variation,with the assistance of primary and secondary detection techniques,i.e.second-order differential current derivatived2I3 dt2and sliding mode window-based Pearson’s correlation coefficient.For fault classification a novel approach using modified multifractal detrended fluctuation analysis(M-MFDFA)is presented.The advantage of this method is its ability to estimate the local trends of any order polynomial function with the help of polynomial and trigonometric functions.It also doesn’t require any signal processing algorithm for decomposition resulting and this results in a reduction of computational burden.The detected fault signals are directly passed through the M-MFDFA classifier for fault type classification.To enhance the performance of the proposed classifier,statistical data is obtained from the M-MFDFA feature vectors,and the obtained data is plotted in 2-D and 3-D scatter plots for better visualization.Accurate fault distance estimation is carried out for all types of faults in the DC ring bus microgrid with the assistance of recursive least squares with a forgetting factor(FF-RLS).To verify the performance and superiority of the proposed classifier,it is compared with existing classifiers in terms of features,classification accuracy(CA),and relative computational time(RCT).展开更多
Estimating the target position of low-frequency sound sources in a shallow sea environment is difficult due to the high cost of hydrophone placement and the complexity of the propagation model.We propose a compressed ...Estimating the target position of low-frequency sound sources in a shallow sea environment is difficult due to the high cost of hydrophone placement and the complexity of the propagation model.We propose a compressed recurrent neural network(C-RNN)model that compresses the signal received by a vector hydrophone into a dynamic sound intensity signal and compresses the target position of the sound source into a GeoHash code.Two types of data are used to carry out prior training on the recurrent neural network,and the trained network is subsequently used to estimate the target position of the sound source.Compared with traditional mathematical models,the C-RNN model functions independently under the complex sound field environment and terrain conditions,and allows for real-time positioning of the sound source under low-parameter operating conditions.Experimental results show that the average error of the model is 56 m for estimating the target position of a low-frequency sound source in a shallow sea environment.展开更多
We propose a method by which location of load for bending beam can be approxi- mately retrieved by matching the measured and theoretically forecasted displacement distribu- tion. To show the method validity, a princip...We propose a method by which location of load for bending beam can be approxi- mately retrieved by matching the measured and theoretically forecasted displacement distribu- tion. To show the method validity, a principal experiment is performed.展开更多
基金The Cultivation Fund of the Key Scientific and Technical Innovation Project of Ministry of Education of China(No.706028)
文摘In order to enhance the location estimation performance of mobile station(MS)tracking and positioning, a new method of mobile location optimal estimation based on the federated filtering structure and the simplified unscented Kalman filter (UKF) is presented. The proposed algorithm uses the Singer mobile statement model as the reference system, and the simplified UKF as the subfilters. The subfilters receive the two groups of independently detected time difference of arrival (TDOA) measurement inputs and Doppler measurement inputs, and produce local estimation outputs to the main estimator. Then the main estimator performs the optimal fusion of the local estimation outputs according to the scalar weighted rule, and a global optimal or suboptimal estimation result is achieved. Finally the main estimator gives feedback and reset information to the subfilters and the reference system for next step estimation. In the simulations, the estimation performance of the proposed algorithm is evaluated and compared with the simplified UKF method with TDOA or Doppler measurement alone. The simulation results demonstrate that the proposed algorithm can effectively reduce the location estimation error and variance of the MS, and has favorable performance in both root mean square error(RMSE) and mean error cumulative distribution function(CDF).
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2021R1A2C1011216)。
文摘In this study,a machine vision-based pattern matching technique was applied to estimate the location of an autonomous driving robot and perform 3D tunnel mapping in an underground mine environment.The autonomous driving robot continuously detects the wall of the tunnel in the horizontal direction using the light detection and ranging(Li DAR)sensor and performs pattern matching by recognizing the shape of the tunnel wall.The proposed method was designed to measure the heading of the robot by fusion with the inertial measurement units sensor according to the pattern matching accuracy;it is combined with the encoder sensor to estimate the location of the robot.In addition,when the robot is driving,the vertical direction of the underground mine is scanned through the vertical Li DAR sensor and stacked to create a 3D map of the underground mine.The performance of the proposed method was superior to that of previous studies;the mean absolute error achieved was 0.08 m for the X-Y axes.A root mean square error of 0.05 m^(2)was achieved by comparing the tunnel section maps that were created by the autonomous driving robot to those of manual surveying.
基金Sponsored by the Key Science Fund of Tianjin (Grant No. 023801211)
文摘A novel numerical algorithm for fault location estimation of single-phase-to-earth fault on EHV transmission lines is presented in this paper. The method is based on one-terminal voltage and current data and is used in a procedure that provides the automatic determination of faulted types and phases, rather than requires engineer to specify them. The loop and nodal equations comparing the faulted phase to non-fauhed phases of multi-parallel lines are introduced in the fauh location estimation models, in which source impedance of remote end is not involved. Precise algorithms of locating fault are derived. The effect of load flow and fauh resistance, on the location accuracy, are effectively eliminated. The algorithms are demonstrated by digital computer simulations.
基金supported by the National Natural Science Foundation of China under Grant No.61371075the 863 project SS2015AA011306
文摘The tremendous performance gain of heterogeneous networks(Het Nets) is at the cost of complicated resource allocation. Considering information security, the resource allocation for Het Nets becomes much more challenging and this is the focus of this paper. In this paper, the eavesdropper is hidden from the macro base stations. To relax the unpractical assumption on the channel state information on eavesdropper, a localization based algorithm is first given. Then a joint resource allocation algorithm is proposed in our work, which simultaneously considers physical layer security, cross-tier interference and joint optimization of power and subcarriers under fairness requirements. It is revealed in our work that the considered optimization problem can be efficiently solved relying on convex optimization theory and the Lagrangian dual decomposition method is exploited to solve the considered problem effectively. Moreover, in each iteration the closed-form optimal resource allocation solutions can be obtained based on the Karush-Kuhn-Tucker(KKT) conditions. Finally, the simulation results are given to show the performance advantages of the proposed algorithm.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61101122)the National High Technology Research and Development Program of China(Grant No.2012AA120802)the National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2012ZX03004-003)
文摘For indoor location estimation based on received signal strength( RSS) in wireless local area networks( WLAN),in order to reduce the influence of noise on the positioning accuracy,a large number of RSS should be collected in offline phase. Therefore,collecting training data with positioning information is time consuming which becomes the bottleneck of WLAN indoor localization. In this paper,the traditional semisupervised learning method based on k-NN and ε-NN graph for reducing collection workload of offline phase are analyzed,and the result shows that the k-NN or ε-NN graph are sensitive to data noise,which limit the performance of semi-supervised learning WLAN indoor localization system. Aiming at the above problem,it proposes a l1-graph-algorithm-based semi-supervised learning( LG-SSL) indoor localization method in which the graph is built by l1-norm algorithm. In our system,it firstly labels the unlabeled data using LG-SSL and labeled data to build the Radio Map in offline training phase,and then uses LG-SSL to estimate user's location in online phase. Extensive experimental results show that,benefit from the robustness to noise and sparsity ofl1-graph,LG-SSL exhibits superior performance by effectively reducing the collection workload in offline phase and improving localization accuracy in online phase.
文摘Mobile location using angle of arrival (AOA) measurements has received considerable attention. This paper presents an approximation of maximum likelihood estimator (MLE) for localizing a source based on AOA measurements. By introducing an intermediate variable, the nonlinear equations relating AOA estimates can be transformed into a set of equations which are linear in the unknown parameters. It is an approximate realization of the MLE. Simulations show that the proposed algorithm outperforms the previous contribution.
文摘An accurate numerical algorithm for three-line fault involving different phases from each of two-parallel lines is presented. It is based on one-terminal voltage and current data. The loop and nodel equations comparing faulted phase to non-faulted phase of two-parallel lines are introduced in the fault location estimation modal, in which the faulted impedance of remote end is not involved. The effect of load flow and fault resistance on the accuracy of fault location are effectively eliminated, therefore an accurate algorithm of locating fault is derived. The algorithm is demonstrated by digital computer simulations and the results show that errors in locating fault are less than 1%.
文摘A novel numerical algorithm of fault location estimation for four-line fault without ground connection involving phases from each of the parallel lines is presented in this paper. It is based on one-terminal voltage and current data. The loop and nodal equations comparing faulted phase to non-faulted phase of two-parallel lines are introduced in the fault location estimation model, in which the source impedance of a remote end is not involved. The effects of load flow and fault resistance on the accuracy of fault location are effectively eliminated, therefore a precise algorithm of locating fault is derived. The algorithm is demonstrated by digital computer simulations.
基金This project is supported by National Electric Power Corporation Foundation of China(No.SPKJ010-27).
文摘Target tracking is one typical application of visual servoing technology. It is still a difficult task to track high speed target with current visual servo system. The improvement of visual servoing scheme is strongly required. A position-based visual servo parallel system is presented for tracking target with high speed. A local Frenet frame is assigned to the sampling point of spatial trajectory. Position estimation is formed by the differential features of intrinsic geometry, and orientation estimation is formed by homogenous transformation. The time spent for searching and processing can be greatly reduced by shifting the window according to features location prediction. The simulation results have demonstrated the ability of the system to track spatial moving object.
文摘Location based social networks( LBSNs) provide location specific data generated from smart phone into online social networks thus people can share their points of interest( POIs). POI collections are complex and can be influenced by various factors,such as user preferences,social relationships and geographical influence. Therefore,recommending new locations in LBSNs requires to take all these factors into consideration. However,one problem is how to determine optimal weights of influencing factors in an algorithm in which these factors are combined. The user similarity can be obtained from the user check-in data,or from the user friend information,or based on the different geographical influences on each user's check-in activities. In this paper,we propose an algorithm that calculates the user similarity based on check-in records and social relationships,using a proposed weighting function to adjust the weights of these two kinds of similarities based on the geographical distance between users. In addition,a non-parametric density estimation method is applied to predict the unique geographical influence on each user by getting the density probability plot of the distance between every pair of user's check-in locations. Experimental results,using foursquare datasets,have shown that comparisons between the proposed algorithm and the other five baseline recommendation algorithms in LBSNs demonstrate that our proposed algorithm is superior in accuracy and recall,furthermore solving the sparsity problem.
基金the Shanghai Commission of Science and Technology Grant (No. 05SN07114)
文摘Wireless local area networks (WLAN) localization based on received signal strength is becoming an important enabler of location based services. Limited efficiency and accuracy are disadvantages to the deterministic location estimation techniques. The probabilistic techniques show their good accuracy but cost more computation overhead. A Gaussian mixture model based on clustering technique was presented to improve location determination efficiency. The proposed clustering algorithm reduces the number of candidate locations from the whole area to a cluster. Within a cluster, an improved nearest neighbor algorithm was used to estimate user location using signal strength from more access points. Experiments show that the location estimation time is greatly decreased while high accuracy can still be achieved.
文摘This paper presents fault detection,classification,and location for a PV-Wind-based DC ring microgrid in the MATLAB/SIMULINK platform.Initially,DC fault signals are collected from local measurements to examine the outcomes of the proposed system.Accurate detection is carried out for all faults,(i.e.,cable and arc faults)under two cases of fault resistance and distance variation,with the assistance of primary and secondary detection techniques,i.e.second-order differential current derivatived2I3 dt2and sliding mode window-based Pearson’s correlation coefficient.For fault classification a novel approach using modified multifractal detrended fluctuation analysis(M-MFDFA)is presented.The advantage of this method is its ability to estimate the local trends of any order polynomial function with the help of polynomial and trigonometric functions.It also doesn’t require any signal processing algorithm for decomposition resulting and this results in a reduction of computational burden.The detected fault signals are directly passed through the M-MFDFA classifier for fault type classification.To enhance the performance of the proposed classifier,statistical data is obtained from the M-MFDFA feature vectors,and the obtained data is plotted in 2-D and 3-D scatter plots for better visualization.Accurate fault distance estimation is carried out for all types of faults in the DC ring bus microgrid with the assistance of recursive least squares with a forgetting factor(FF-RLS).To verify the performance and superiority of the proposed classifier,it is compared with existing classifiers in terms of features,classification accuracy(CA),and relative computational time(RCT).
基金the National Natural Science Foundation of China(No.51475249)the Key Research and Development Program of Shandong Province,China(No.2018GGX103016)。
文摘Estimating the target position of low-frequency sound sources in a shallow sea environment is difficult due to the high cost of hydrophone placement and the complexity of the propagation model.We propose a compressed recurrent neural network(C-RNN)model that compresses the signal received by a vector hydrophone into a dynamic sound intensity signal and compresses the target position of the sound source into a GeoHash code.Two types of data are used to carry out prior training on the recurrent neural network,and the trained network is subsequently used to estimate the target position of the sound source.Compared with traditional mathematical models,the C-RNN model functions independently under the complex sound field environment and terrain conditions,and allows for real-time positioning of the sound source under low-parameter operating conditions.Experimental results show that the average error of the model is 56 m for estimating the target position of a low-frequency sound source in a shallow sea environment.
文摘We propose a method by which location of load for bending beam can be approxi- mately retrieved by matching the measured and theoretically forecasted displacement distribu- tion. To show the method validity, a principal experiment is performed.