A diagnostic signal current trace detecting based single phase-to-ground fault line identifica- tion and section location method for non-effectively grounded distribution systems is presented in this paper.A special d...A diagnostic signal current trace detecting based single phase-to-ground fault line identifica- tion and section location method for non-effectively grounded distribution systems is presented in this paper.A special diagnostic signal current is injected into the fault distribution system,and then it is detected at the outlet terminals to identify the fault line and at the sectionalizing or branching point along the fault line to locate the fault section.The method has been put into application in actual distribution network and field experience shows that it can identify the fault line and locate the fault section correctly and effectively.展开更多
Precise fault location plays an important role in the reliability of modern power systems.With the in-creasing penetration of renewable energy sources,the power system experiences a decrease in system inertia and alte...Precise fault location plays an important role in the reliability of modern power systems.With the in-creasing penetration of renewable energy sources,the power system experiences a decrease in system inertia and alterations in steady-state characteristics following a fault occurrence.Most existing single-ended phasor domain methods assume a certain impedance of the remote-end system or consistent current phases at both ends.These problems present challenges to the applicability of con-ventional phasor-domain location methods.This paper presents a novel single-ended time domain fault location method for single-phase-to-ground faults,one which fully considers the distributed parameters of the line model.The fitting of transient signals in the time domain is real-ized to extract the instantaneous amplitude and phase.Then,to eliminate the error caused by assumptions of lumped series resistance in the Bergeron model,an im-proved numerical derivation is presented for the distrib-uted parameter line model.The instantaneous symmet-rical components are extracted for decoupling and inverse transformation of three-phase recording data.Based on the above,the equation of instantaneous phase constraint is established to effectively identify the fault location.The proposed location method reduces the negative effects of fault resistance and the uncertainty of remote end pa-rameters when relying on one-terminal data for localiza-tion.Additionally,the proposed fault analysis methods have the ability to adapt to transient processes in power systems.Through comparisons with existing methods in three different systems,the fault position is correctly identified within an error of 1%.Also,the results are not affected by sampling rates,data windows,fault inception angles,and load conditions. Index Terms—Fault location,distributed parameter line model,transient signal,renewable energy,instantaneous phase.展开更多
The existing LCC-HVDC transmission project adopts the fixed-time delay restarting method.This method has disadvantages such as non-selectivity,long restart process,and high probability of restart failure.These issues ...The existing LCC-HVDC transmission project adopts the fixed-time delay restarting method.This method has disadvantages such as non-selectivity,long restart process,and high probability of restart failure.These issues cause a secondary impact on equipment and system power fluctuation.To solve this problem,an adaptive restarting method based on the principle of fault location by current injection is proposed.First,an additional control strategy is proposed to inject a current detection signal.Second,the propagation law of the current signal in the line is analyzed based on the distributed parameter model of transmission line.Finally,a method for identifying fault properties based on the principle of fault location is proposed.The method fully considers the influence of the long-distance transmission line with earth capacitance and overcomes the influence of the increasing effect of the opposite terminal.Simulation results show that the proposed method can accurately identify the fault properties under various complex fault conditions and subsequently realize the adaptive restarting process.展开更多
Analyzed the relation between time delay difference and time delay estimation errors, based on the principles of three-point locating, a reformed threshold method for time delay difference estimation of impulse signal...Analyzed the relation between time delay difference and time delay estimation errors, based on the principles of three-point locating, a reformed threshold method for time delay difference estimation of impulse signals, called as amendment estimation for short, is developed by introducing channel equalization technique to its conventional version, named as direct estimation in this paper, to improve the estimation stability. After inherent relationship between time delay and phase shift of signals is analyzed, an integer period error compensation method utilized the diversities of both contribution share and contribution mode of concerned estimates is proposed under the condition of high precision phase lag estimation. Finally, a cooperative multi-threshold estimation method composed of amendment and direct estimations to process impulse signals with three thresholds is established. In sea trials data tests of passive locating, this method improves the estimation precision of time delay difference efficiently. The experiments verify the theoretical predictions.展开更多
随着智能家居应用的不断深化,基于Wi-Fi信号的室内定位技术也受到了广泛关注。在实际应用中,大多数室内定位算法采集得到的训练数据和测试数据通常并非来自于同一理想环境,各种环境条件变化以及信号漂移导致采集得到的训练数据和测试数...随着智能家居应用的不断深化,基于Wi-Fi信号的室内定位技术也受到了广泛关注。在实际应用中,大多数室内定位算法采集得到的训练数据和测试数据通常并非来自于同一理想环境,各种环境条件变化以及信号漂移导致采集得到的训练数据和测试数据间的概率分布不同。传统定位模型在面对不同分布的训练数据和测试数据时无法保证具有良好的定位精度,常出现算法定位精度大幅降低,甚至算法不可用等问题。面对这一难点,迁移学习中的域适应方法作为一种可以有效解决训练样本和测试样本概率分布不一致的学习问题被广泛应用于室内定位领域。文中结合域适应学习和机器学习算法,提出了一种基于特征迁移的室内定位算法(Transfer Learning Location AlgorithmBased on Global and Local Metrics Adaptation,TL-GLMA)。TL-GLMA在定位阶段通过特征迁移方式将两域原始数据映射至高维空间,从而在最小化两域数据的分布差异的同时保留两域数据内部的局部几何属性,并利用映射后的独立同分布数据训练分类器,从而实现目标定位。实验结果表明,TL-GLMA能够有效减少环境变化带来的干扰,提升定位精度。展开更多
基金Postdoctoral Foundation of China(No.20070410755)PAN Zhencun,born in 1962,male,postdoctor researcher.
文摘A diagnostic signal current trace detecting based single phase-to-ground fault line identifica- tion and section location method for non-effectively grounded distribution systems is presented in this paper.A special diagnostic signal current is injected into the fault distribution system,and then it is detected at the outlet terminals to identify the fault line and at the sectionalizing or branching point along the fault line to locate the fault section.The method has been put into application in actual distribution network and field experience shows that it can identify the fault line and locate the fault section correctly and effectively.
文摘Precise fault location plays an important role in the reliability of modern power systems.With the in-creasing penetration of renewable energy sources,the power system experiences a decrease in system inertia and alterations in steady-state characteristics following a fault occurrence.Most existing single-ended phasor domain methods assume a certain impedance of the remote-end system or consistent current phases at both ends.These problems present challenges to the applicability of con-ventional phasor-domain location methods.This paper presents a novel single-ended time domain fault location method for single-phase-to-ground faults,one which fully considers the distributed parameters of the line model.The fitting of transient signals in the time domain is real-ized to extract the instantaneous amplitude and phase.Then,to eliminate the error caused by assumptions of lumped series resistance in the Bergeron model,an im-proved numerical derivation is presented for the distrib-uted parameter line model.The instantaneous symmet-rical components are extracted for decoupling and inverse transformation of three-phase recording data.Based on the above,the equation of instantaneous phase constraint is established to effectively identify the fault location.The proposed location method reduces the negative effects of fault resistance and the uncertainty of remote end pa-rameters when relying on one-terminal data for localiza-tion.Additionally,the proposed fault analysis methods have the ability to adapt to transient processes in power systems.Through comparisons with existing methods in three different systems,the fault position is correctly identified within an error of 1%.Also,the results are not affected by sampling rates,data windows,fault inception angles,and load conditions. Index Terms—Fault location,distributed parameter line model,transient signal,renewable energy,instantaneous phase.
基金supported by Science and Technology Project of State Grid Corporation of China(52094020006U)National Natural Science Foundation of China(NSFC)(52061635105)China Postdoctoral Science Foundation(2021M692525).
文摘The existing LCC-HVDC transmission project adopts the fixed-time delay restarting method.This method has disadvantages such as non-selectivity,long restart process,and high probability of restart failure.These issues cause a secondary impact on equipment and system power fluctuation.To solve this problem,an adaptive restarting method based on the principle of fault location by current injection is proposed.First,an additional control strategy is proposed to inject a current detection signal.Second,the propagation law of the current signal in the line is analyzed based on the distributed parameter model of transmission line.Finally,a method for identifying fault properties based on the principle of fault location is proposed.The method fully considers the influence of the long-distance transmission line with earth capacitance and overcomes the influence of the increasing effect of the opposite terminal.Simulation results show that the proposed method can accurately identify the fault properties under various complex fault conditions and subsequently realize the adaptive restarting process.
文摘Analyzed the relation between time delay difference and time delay estimation errors, based on the principles of three-point locating, a reformed threshold method for time delay difference estimation of impulse signals, called as amendment estimation for short, is developed by introducing channel equalization technique to its conventional version, named as direct estimation in this paper, to improve the estimation stability. After inherent relationship between time delay and phase shift of signals is analyzed, an integer period error compensation method utilized the diversities of both contribution share and contribution mode of concerned estimates is proposed under the condition of high precision phase lag estimation. Finally, a cooperative multi-threshold estimation method composed of amendment and direct estimations to process impulse signals with three thresholds is established. In sea trials data tests of passive locating, this method improves the estimation precision of time delay difference efficiently. The experiments verify the theoretical predictions.
文摘随着智能家居应用的不断深化,基于Wi-Fi信号的室内定位技术也受到了广泛关注。在实际应用中,大多数室内定位算法采集得到的训练数据和测试数据通常并非来自于同一理想环境,各种环境条件变化以及信号漂移导致采集得到的训练数据和测试数据间的概率分布不同。传统定位模型在面对不同分布的训练数据和测试数据时无法保证具有良好的定位精度,常出现算法定位精度大幅降低,甚至算法不可用等问题。面对这一难点,迁移学习中的域适应方法作为一种可以有效解决训练样本和测试样本概率分布不一致的学习问题被广泛应用于室内定位领域。文中结合域适应学习和机器学习算法,提出了一种基于特征迁移的室内定位算法(Transfer Learning Location AlgorithmBased on Global and Local Metrics Adaptation,TL-GLMA)。TL-GLMA在定位阶段通过特征迁移方式将两域原始数据映射至高维空间,从而在最小化两域数据的分布差异的同时保留两域数据内部的局部几何属性,并利用映射后的独立同分布数据训练分类器,从而实现目标定位。实验结果表明,TL-GLMA能够有效减少环境变化带来的干扰,提升定位精度。