Sensing coverage and energy consumption are two primary issues in wireless sensor networks. Sensing coverage is closely related to network energy consumption. The performance of a sensor network depends to a large ext...Sensing coverage and energy consumption are two primary issues in wireless sensor networks. Sensing coverage is closely related to network energy consumption. The performance of a sensor network depends to a large extent on the sensing coverage, and its lifetime is determined by its energy consumption. In this paper, an energy-efficient Area Coverage protocol for Heterogeneous Energy sensor networks (ACHE) is proposed. ACHE can achieve a good performance in terms of sensing area coverage, lifetime by minimizing energy consumption for control overhead, and balancing the energy load among all nodes. Adopting the hierarchical clustering idea, ACHE selects the active nodes based on the average residual energy of neighboring nodes and its own residual energy parameters. Our simulation demonstrates that ACHE not only provide the high quality of sensing coverage, but also has the good performance in the energy efficiency. In addition, ACHE can better adapt the applications with the great heterogeneous energy capacities in the sensor networks, as well as effectively reduce the control overhead.展开更多
文摘Sensing coverage and energy consumption are two primary issues in wireless sensor networks. Sensing coverage is closely related to network energy consumption. The performance of a sensor network depends to a large extent on the sensing coverage, and its lifetime is determined by its energy consumption. In this paper, an energy-efficient Area Coverage protocol for Heterogeneous Energy sensor networks (ACHE) is proposed. ACHE can achieve a good performance in terms of sensing area coverage, lifetime by minimizing energy consumption for control overhead, and balancing the energy load among all nodes. Adopting the hierarchical clustering idea, ACHE selects the active nodes based on the average residual energy of neighboring nodes and its own residual energy parameters. Our simulation demonstrates that ACHE not only provide the high quality of sensing coverage, but also has the good performance in the energy efficiency. In addition, ACHE can better adapt the applications with the great heterogeneous energy capacities in the sensor networks, as well as effectively reduce the control overhead.