Based on the scatter matrix of the four-port lossless mismatched circulator, the phase differential equation of the injection-locked magnetron is derived by comparing different effects of the mismatched and perfect ci...Based on the scatter matrix of the four-port lossless mismatched circulator, the phase differential equation of the injection-locked magnetron is derived by comparing different effects of the mismatched and perfect circulator on the injection ratio. Besides, the locking range of the injection-locked magnetron with the mismatched circulator is deduced by functional operation. In addition, the phase differential equation and the locked bandwidth of the injection-locked system with a mismatched circulator are compared with those of the small injection-ratio case with a perfect circulator. The in- fluence of the circulator reflection coefficient on the injection-locked magnetron is also analyzed by numerical calculation. Theoretical analysis shows that the decrement of the locked bandwidth is less than 1% and decrement of the stable phase difference is less than 1.2% when the reflection coefficient is less than 0.1.展开更多
An injection-Locked divider(ILD)can provide good synchronization at lower inputsignal to noise ratio,which is its advantage over other types of divider.The general expressionof phase equation and equivalent model are ...An injection-Locked divider(ILD)can provide good synchronization at lower inputsignal to noise ratio,which is its advantage over other types of divider.The general expressionof phase equation and equivalent model are presented for the ILD with an input additive noise.In the absence of noise the performance of the phase-modulated signal through the ILD andsynchronous ranges of the ILD are given.The effects of the additive noise on the ILD arediscuued.The injection-locked amplifier(ILA)is only a particular case in which n=1,thereforethe given results arc applicable to the ILA.展开更多
The frequency characteristics of free oscillation magnetron(FOM) and injection-locked magnetron(ILM) are theoretically investigated.By using the equal power voltage obtained from the experiment data,expressions of...The frequency characteristics of free oscillation magnetron(FOM) and injection-locked magnetron(ILM) are theoretically investigated.By using the equal power voltage obtained from the experiment data,expressions of the frequency and radio frequency(RF) voltage of FOM and ILM,as well as the locking bandwidth,on the anode voltage and magnetic field are derived.With the increase of the anode voltage and the decrease of the magnetic field,the power and its growth rate increase,while the frequency increases and its growth rate decreases.The theoretical frequency and power of FOM agree with the particle-in-cell(PIC) simulation results.Besides,the theoretical trends of the power and frequency with the anode voltage and magnetic field are consistent with the experimental results,which verifies the accuracy of the theory.The theory provides a novel calculation method of frequency characteristics.It can approximately analyze the power and frequency of both FOM and ILM,which promotes the industrial applications of magnetron and microwave energy.展开更多
基金Project supported by the National Basic Research Program of China(Grant No.2013CB328901)the National Natural Science Foundation of China(Grant No.11305177)
文摘Based on the scatter matrix of the four-port lossless mismatched circulator, the phase differential equation of the injection-locked magnetron is derived by comparing different effects of the mismatched and perfect circulator on the injection ratio. Besides, the locking range of the injection-locked magnetron with the mismatched circulator is deduced by functional operation. In addition, the phase differential equation and the locked bandwidth of the injection-locked system with a mismatched circulator are compared with those of the small injection-ratio case with a perfect circulator. The in- fluence of the circulator reflection coefficient on the injection-locked magnetron is also analyzed by numerical calculation. Theoretical analysis shows that the decrement of the locked bandwidth is less than 1% and decrement of the stable phase difference is less than 1.2% when the reflection coefficient is less than 0.1.
文摘An injection-Locked divider(ILD)can provide good synchronization at lower inputsignal to noise ratio,which is its advantage over other types of divider.The general expressionof phase equation and equivalent model are presented for the ILD with an input additive noise.In the absence of noise the performance of the phase-modulated signal through the ILD andsynchronous ranges of the ILD are given.The effects of the additive noise on the ILD arediscuued.The injection-locked amplifier(ILA)is only a particular case in which n=1,thereforethe given results arc applicable to the ILA.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB328901)the National Natural Science Foundation of China(Grant No.11305177)
文摘The frequency characteristics of free oscillation magnetron(FOM) and injection-locked magnetron(ILM) are theoretically investigated.By using the equal power voltage obtained from the experiment data,expressions of the frequency and radio frequency(RF) voltage of FOM and ILM,as well as the locking bandwidth,on the anode voltage and magnetic field are derived.With the increase of the anode voltage and the decrease of the magnetic field,the power and its growth rate increase,while the frequency increases and its growth rate decreases.The theoretical frequency and power of FOM agree with the particle-in-cell(PIC) simulation results.Besides,the theoretical trends of the power and frequency with the anode voltage and magnetic field are consistent with the experimental results,which verifies the accuracy of the theory.The theory provides a novel calculation method of frequency characteristics.It can approximately analyze the power and frequency of both FOM and ILM,which promotes the industrial applications of magnetron and microwave energy.