The interaction functions of electrically coupled Hindmarsh–Rose(HR) neurons for different firing patterns are investigated in this paper.By applying the phase reduction technique,the phase response curve(PRC) of...The interaction functions of electrically coupled Hindmarsh–Rose(HR) neurons for different firing patterns are investigated in this paper.By applying the phase reduction technique,the phase response curve(PRC) of the spiking neuron and burst phase response curve(BPRC) of the bursting neuron are derived.Then the interaction function of two coupled neurons can be calculated numerically according to the PRC(or BPRC) and the voltage time course of the neurons.Results show that the BPRC is more and more complicated with the increase of the spike number within a burst,and the curve of the interaction function oscillates more and more frequently with it.However,two certain things are unchanged:Φ = 0,which corresponds to the in-phase synchronization state,is always the stable equilibrium,while the anti-phase synchronization state with Φ = 0.5 is an unstable equilibrium.展开更多
睡眠分期是评估睡眠质量的基础。然而,睡眠呼吸暂停(sleep apnea,SA)会改变测试者的睡眠结构,进而影响对睡眠分期的准确评估。因此,在评估睡眠质量时,准确检测睡眠呼吸暂停和睡眠分期至关重要。为准确评估睡眠分期,本研究通过研究脑区...睡眠分期是评估睡眠质量的基础。然而,睡眠呼吸暂停(sleep apnea,SA)会改变测试者的睡眠结构,进而影响对睡眠分期的准确评估。因此,在评估睡眠质量时,准确检测睡眠呼吸暂停和睡眠分期至关重要。为准确评估睡眠分期,本研究通过研究脑区之间的功能连接,探讨了脑功能连接的相互作用关系。采用锁相值(phase locking value,PLV)在不同时间段上进行特征提取,构建功能连接网络;然后利用多个时间段的PLV进行特征融合,并通过LibSVM(library for support vector machines,LibSVM)结合分类性能优化策略的方法进行睡眠分期。同时,本研究还分析了睡眠呼吸暂停和正常呼吸对脑网络的影响。实验结果显示,睡眠呼吸暂停时的各脑区连通紧密程度大于正常呼吸时,并在子时段数为30时,睡眠分期的分类准确率达到了88.87%,呼吸暂停的检测准确率达到了93.64%。该算法在睡眠分类和呼吸暂停检测方面表现出良好性能,有助于推动脑电睡眠分类和呼吸暂停检测系统的开发和应用。展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11272065 and 11472061)
文摘The interaction functions of electrically coupled Hindmarsh–Rose(HR) neurons for different firing patterns are investigated in this paper.By applying the phase reduction technique,the phase response curve(PRC) of the spiking neuron and burst phase response curve(BPRC) of the bursting neuron are derived.Then the interaction function of two coupled neurons can be calculated numerically according to the PRC(or BPRC) and the voltage time course of the neurons.Results show that the BPRC is more and more complicated with the increase of the spike number within a burst,and the curve of the interaction function oscillates more and more frequently with it.However,two certain things are unchanged:Φ = 0,which corresponds to the in-phase synchronization state,is always the stable equilibrium,while the anti-phase synchronization state with Φ = 0.5 is an unstable equilibrium.
文摘睡眠分期是评估睡眠质量的基础。然而,睡眠呼吸暂停(sleep apnea,SA)会改变测试者的睡眠结构,进而影响对睡眠分期的准确评估。因此,在评估睡眠质量时,准确检测睡眠呼吸暂停和睡眠分期至关重要。为准确评估睡眠分期,本研究通过研究脑区之间的功能连接,探讨了脑功能连接的相互作用关系。采用锁相值(phase locking value,PLV)在不同时间段上进行特征提取,构建功能连接网络;然后利用多个时间段的PLV进行特征融合,并通过LibSVM(library for support vector machines,LibSVM)结合分类性能优化策略的方法进行睡眠分期。同时,本研究还分析了睡眠呼吸暂停和正常呼吸对脑网络的影响。实验结果显示,睡眠呼吸暂停时的各脑区连通紧密程度大于正常呼吸时,并在子时段数为30时,睡眠分期的分类准确率达到了88.87%,呼吸暂停的检测准确率达到了93.64%。该算法在睡眠分类和呼吸暂停检测方面表现出良好性能,有助于推动脑电睡眠分类和呼吸暂停检测系统的开发和应用。