Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail med...Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail medium-or high-frequency frictional interactions are perceived as an essential reason of the high-order polygonal wear of railway wheels,which are potentially resulted by the flexible deformations of the train/track system or other external excitations.In this work,the effect of wheel/rail flexibility on polygonal wear evolution of heavy-haul locomotive wheels is explored with aid of the long-term wheel polygonal wear evolution simulations,in which different flexible modeling of the heavy-haul wheel/rail coupled system is implemented.Further,the mitigation measures for the polygonal wear of heavy-haul locomotive wheels are discussed.The results point out that the evolution of polygonal wear of heavy-haul locomotive wheels can be veritably simulated with consideration of the flexible effect of both wheelset and rails.Execution of mixed-line operation of heavy-haul trains and application of multicut wheel re-profiling can effectively reduce the development of wheel polygonal wear.This research can provide a deep-going understanding of polygonal wear evolution mechanism of heavy-haul locomotive wheels and its mitigation measures.展开更多
Purpose–Auxiliary power system is an indispensable part of the train;the auxiliary systems of both electric locomotives and EMUs mainly are powered by one of the two ways,which are either from auxiliary windings of t...Purpose–Auxiliary power system is an indispensable part of the train;the auxiliary systems of both electric locomotives and EMUs mainly are powered by one of the two ways,which are either from auxiliary windings of traction transformers or from DC-link voltage of traction converters.Powered by DC-link voltage of traction converters,the auxiliary systems were maintained of uninterruptable power supply with energy from electric braking.Meanwhile,powered by traction transformers,the auxiliary systems were always out of power while passing the neutral section of power supply grid and control system is powered by battery at this time.Design/methodology/approach–Uninterrupted power supply of auxiliary power system powered by auxiliary winding of traction transformer was studied.Failure reasons why previous solutions cannot be realized are analyzed.An uninterruptable power supply scheme for the auxiliary systems powered by auxiliary windings of traction transformers is proposed in this paper.The validity of the proposed scheme is verified by simulation and experimental results and on-site operation of an upgraded HXD3C type locomotive.This scheme is attractive for upgrading practical locomotives with the auxiliary systems powered by auxiliary windings of traction transformers.Findings–This scheme regenerates braking power supplied to auxiliary windings of traction transformers while a locomotive runs in the neutral section of the power supply grid.Control objectives of uninterrupted power supply technology are proposed,which are no overvoltage,no overcurrent and uninterrupted power supply.Originality/value–The control strategies of the scheme ensure both overvoltage free and inrush current free when a locomotive enters or leaves the neutral section.Furthermore,this scheme is cost low by employing updated control strategy of software and add both the two current sensors and two connection wires of hardware.展开更多
We describe a system for turning the accumulator electric locomotives used in coal mines. This improves transport efficiency and decreases mine construction and production costs. The operating requirements, principles...We describe a system for turning the accumulator electric locomotives used in coal mines. This improves transport efficiency and decreases mine construction and production costs. The operating requirements, principles, working features and transmission system are discussed. This system has a simple structure and can be manufactured, transported and assembled easily. It, therefore, can handle accumulator locomotives of middle and small size.展开更多
To research the influence of asymmetric brake shoe forces(ABSF)induced by braking failure on the dynamic performance of six-axle locomotive,the static equilibrium model of three-axle bogie and dynamic model for locomo...To research the influence of asymmetric brake shoe forces(ABSF)induced by braking failure on the dynamic performance of six-axle locomotive,the static equilibrium model of three-axle bogie and dynamic model for locomotive are established.The coupling vibration equations of axle hung motor and wheelset are derived.For the air braking,the influence mechanism of ABSF on the wheel-rail asymmetric motion and force characteristics are discussed.It can be found that if the ABSF is applied in the front wheelset,all the wheelsets move laterally in the same direction.Once the ABSF occurs in the middle or rear one,other wheelsets may move laterally towards the opposite direction.The motion amplitude and direction of all wheelsets strictly depend on the resultant moment of suspension yawing moment and brake shoe asymmetric moment.For the asymmetric braking,the free lateral gap of axle-box could increase the wheelset motion amplitude,but could not change the moving direction.In both the straight line and curve,the ABSF may lead to wheelset misaligning motion,intensify the wheel-rail lateral dynamic interaction and deteriorate wheel-rail contact state.Especially for the steering wheelsets,the asymmetric braking increases the wheelset attack angle significantly,which forms the worst braking condition.展开更多
Aim: A new concept of locomotive syndrome has been proposed by the Japanese Orthopaedic Association. The aim of this study is to clarify the utility of its self-checklist, “loco-check,” as a tool for estimating the ...Aim: A new concept of locomotive syndrome has been proposed by the Japanese Orthopaedic Association. The aim of this study is to clarify the utility of its self-checklist, “loco-check,” as a tool for estimating the physical dysfunction of elderly people. Methods: Subjects were 1124 community-dwelling Japanese people, 557 men and 567 women, aged 40-89 years. Information about the seven “loco-check” items was obtained from present inquiry sheets. Physical functions were examined by grip strength, knee extension strength, walking speed and one-leg standing time with open eyes. The averages of these test values, controlled for age and BMI, were compared between the “loco-check” (+) group and the “loco-check” (-) group. Also we examined about the trend of decline of physical function, together with SF36 physical function subscale score, as the number of the items chosen increased. Results: Adjusted average values of all four physical function examinations in the “lococheck” (+) group were significantly lower than those of the “loco-check” (-) group (all, p . Also the adjusted average values of the majority of four tests were significantly lower in those who checked each of the “loco-check” items than those who did not, for most of the items. It was also revealed that the more items subjects checked, the lower the adjusted average values were, except for one-leg standing time. It was also the case with SF36 physical function subscale score. Conclusion: We showed the utility of “loco-check” as a simple tool not only for noticing the physical dysfunction of elderly people, but also for estimating the extent of it, except for balancing ability, particularly by counting the number of checked items.展开更多
The development of secondary health complications following spinal cord injury has been increasingly recognized by healthcare professionals as a major concern. These problems most specifically affect complete or near-...The development of secondary health complications following spinal cord injury has been increasingly recognized by healthcare professionals as a major concern. These problems most specifically affect complete or near-complete spinal cord injury patients (e.g., those with minimal mobility), who are not typically rehabilitated with treadmill training approaches, because motor control and leg movements are largely impaired. However, recent pharmaceutical advances in central pattern generator activation may provide new therapeutic hopes for these spinal cord injury patients. This article provides a comprehensive overview, for the non-specialist, of the most recent advances in this field.展开更多
The trace amines(TAs)are a family of endogenous amines with structural,metabolic,physiological and pharmacological similarities to classical monoamine neurotransmitters.The TA family includes tyramine,octopamine,β-...The trace amines(TAs)are a family of endogenous amines with structural,metabolic,physiological and pharmacological similarities to classical monoamine neurotransmitters.The TA family includes tyramine,octopamine,β-phenylethylamine(PEA),and tryptamine(Figure 1).展开更多
The harsh operating environment and complex operating conditions of the mine electric locomotive affect the control performance of the locomotive traction motor.In order to improve the speed control performance of ele...The harsh operating environment and complex operating conditions of the mine electric locomotive affect the control performance of the locomotive traction motor.In order to improve the speed control performance of electric locomotive traction motors,a dynamic fractional-order sliding mode control(DFOSMC)algorithm considering uncertain factors was proposed.A load torque sliding mode observer was designed for the complex load disturbance of the traction motor,and its observations were integrated into the DFOSMC controller to overcome the influence of load disturbance.Finally,the stability of the designed controller was proved by Lyapunov's theorem.Besides,the control performance of DFOSMC controller was compared with integer-order sliding mode controller and fractional-order sliding mode controller through simulation experiments.Compared with integer-order sliding mode and fractional-order sliding mode controllers,the dynamic and static performance of the DFOSMC controller with load observation is better,and it has stronger anti-interference ability.The DFOSMC controller effectively improves the control performance of the traction motor of the mining locomotive.展开更多
Hybrid locomotive concepts have been considered as a step towards converting the railway industry into a green transport mode.One of the challenges in integrating a hybrid locomotive in the train consist is that the b...Hybrid locomotive concepts have been considered as a step towards converting the railway industry into a green transport mode.One of the challenges in integrating a hybrid locomotive in the train consist is that the battery pack in the locomotive needs to be recharged during a long-haul trip which requires stopping of the train.A typical battery pack requires about 1 h to recharge which is unacceptable.With the improvement in the charging system,it is now possible that the same capacity battery pack could be recharged in 10–12 min which can be a competitive option for the railway companies.This paper proposes a method based on simulation to evaluate the positioning of charging stations on a train network.A typical example of a heavy haul train operation hauled by diesel-electric and hybrid locomotives is used to demonstrate the method by using simulation softwares.The result of the simulation study show that the method developed in this paper can be used to evaluate the state of charge(SoC)status of a hybrid locomotive along the track.It is also shown that the SoC status obtained by the simulation method can be further used to assess the positions of charging stations along the track at the design stage.展开更多
Based on annual statistical data collected by the Chinese Railway Statistic Center, the CO2 emissions of locomotives during 1975-2005 were calculated and the emission intensity and its dynamic characteristics were ana...Based on annual statistical data collected by the Chinese Railway Statistic Center, the CO2 emissions of locomotives during 1975-2005 were calculated and the emission intensity and its dynamic characteristics were analyzed. The results show that the CO2 emissions of steam locomotives decreased while that of diesel locomotives increased with time, due to the continuous shift from steam to diesel and electric locomotives. The total CO2 emissions of steam and diesel locomo- tives in China decreased from 42.23 Mt in 1975 to 16.40 Mt in 2005. The emission intensity of CO2 from the two kinds of locomotives decreased at an average rate of 2.4 g (converted t kin)-1 per year. The percentage of the CO2 emissions of locomotives to the total CO2 emissions in the sector of transportation, storage and post in China also decreased persistently from 1980 to 2005.展开更多
Purpose–The brake controller is a key component of the locomotive brake system.It is essential to study its safety.Design/methodology/approach–This paper summarizes and analyzes typical faults of the brake controlle...Purpose–The brake controller is a key component of the locomotive brake system.It is essential to study its safety.Design/methodology/approach–This paper summarizes and analyzes typical faults of the brake controller,and proposes four categories of faults:position sensor faults,microswitch faults,mechanical faults and communication faults.Suggestions and methods for improving the safety of the brake controller are also presented.Findings–In this paper,a self-judgment and self-learning dynamic calibration method is proposed,which integrates the linear error of the sensor and the manufacturing and assembly errors of the brake controller to solve the output drift.This paper also proposes a logic for diagnosing and handling microswitch faults.Suggestions are proposed for other faults of brake controller.Originality/value–The methods proposed in this paper can greatly improve the usability of the brake controller and reduce the failure rate.展开更多
Introduction:Locomotion is a determinant of intrinsic capacity of older people and can be limited by dysfunction in locomotory organs,characterizing Locomotive Syndrome(LoS).Knowledge on locomotive problems and sarcop...Introduction:Locomotion is a determinant of intrinsic capacity of older people and can be limited by dysfunction in locomotory organs,characterizing Locomotive Syndrome(LoS).Knowledge on locomotive problems and sarcopenia,and their interface with quality of life,in the oldest old in the literature is scarce.Objective:To evaluate the correlation between LoS and sarcopenia and their influence on quality of life in oldest old.Methods:A cross-sectional study of an observational,descriptive and analytical epidemiological survey in independent older adults aged 80 and over from São Paulo,Brazil and who participated in the third wave of the LOCOMOV Project,was carried out.Sociodemographic data,comorbidities,functioning in activities of daily living,physical functioning,quality of life,and presence of sarcopenia and LoS were assessed.The statistical analyses included the Test-for-Comparing-Two-Proportions,Pearson's Correlation Coefficient,the chi-Square test and Student´s t-test.Results:Thirty oldest old with a mean age of 89.1 years were evaluated.The prevalence of LoS was high(53.3%)and correlated significantly with chronic pain(p-value 0.024),worse performance on the SPPB and Gait speed(p-value<0.001).Sarcopenia was not correlated with LoS,but worse quality of life on the physical domain was significantly associated with LoS(p-value<0.001)regardless of the presence of sarcopenia.Conclusions:LoS was highly prevalent among the oldest old studied and negatively impacted their quality of life,regardless of the presence of sarcopenia.展开更多
To improve locomotion and operation integration, this paper presents an integrated leg-arm quadruped robot(ILQR) that has a reconfigurable joint. First, the reconfigurable joint is designed and assembled at the end of...To improve locomotion and operation integration, this paper presents an integrated leg-arm quadruped robot(ILQR) that has a reconfigurable joint. First, the reconfigurable joint is designed and assembled at the end of the legarm chain. When the robot performs a task, reconfigurable configuration and mode switching can be achieved using this joint. In contrast from traditional quadruped robots, this robot can stack in a designated area to optimize the occupied volume in a nonworking state. Kinematics modeling and dynamics modeling are established to evaluate the mechanical properties for multiple modes. All working modes of the robot are classified, which can be defined as deployable mode, locomotion mode and operation mode. Based on the stability margin and mechanical modeling, switching analysis and evaluation between each mode is carried out. Finally, the prototype experimental results verify the function realization and switching stability of multimode and provide a design method to integrate and perform multimode for quadruped robots with deployable characteristics.展开更多
The locomotive turntable is an essential device for the steering operation of the railway locomotive. This paper has introduced the structural composition and characteristics of the box girder locomotive turntable, ha...The locomotive turntable is an essential device for the steering operation of the railway locomotive. This paper has introduced the structural composition and characteristics of the box girder locomotive turntable, has ana- lyzed its vertical load, horizontal load and torsional load, and has established a mechanical model for the symmet- rical structure of the box girder locomotive turntable under the action of positive and negative symmetric vertical loads. Furthermore, it has also demonstrated the safe and reliable structural performance of this type of locomotive turntable on the basis of the practical example of a 35 m box girder locomotive turntable.展开更多
Aim: This dissection study was conducted to verify if the Myofascial kinetic lines, outlined in detail in humans and recently documented in horses, were present in dogs. These dynamic lines present rows of interconnec...Aim: This dissection study was conducted to verify if the Myofascial kinetic lines, outlined in detail in humans and recently documented in horses, were present in dogs. These dynamic lines present rows of interconnected muscles, myofascia and other fascia structures, which influence the biomechanics of the spine and limbs. Methods: Forty-two dogs of different breeds and genders were dissected, imaged, and videoed. Results: Similar kinetic lines were verified in the dog, as described in humans and horses, and additionally, three new branches of the lines were discovered. The kinetic lines described were three superficial lines: Dorsal, Ventral, and Lateral, which all started in the hindlimb and ended in the temporal and occipital regions. These lines act respectively in spinal extension, flexion, and lateral flexion. Three profound lines, which started in the tail and ended in the head. The Deep Dorsal Line followed the transversospinal myofascia. The Deep Ventral Line showed an additional start deep in the medial hind limb, continued in the hypaxial myofascia, and enveloped all the viscera. Also, the Deep Lateral Line started in the hindlimb but parted along the trunk in the deep lateral myofascial structures. Two helical lines crossed the midline two or three times and served to rotate the spine. The Functional Line established a sling from the axilla to the contralateral stifle and presented a new ipsilateral branch. The Spiral Line connected the head and the ipsilateral tarsus and additionally presented a new straight branch. The four front limb lines describe their motion: the Front Limb Protraction and Retraction, Adduction, and Abduction Lines. Conclusion: The canine lines mirrored the equine and human lines with exceptions due to differences in anatomy, foot posture, lumbosacral flexibility, and their biomechanical constitution as predator versus prey animals. Additionally, three new canine branches were verified and described.展开更多
Every day walking consists of frequent voluntary modifications in the gait pattern to negotiate obstacles.After spinal cord injury,stepping over an obstacle becomes challenging.Stepping over an obstacle requires senso...Every day walking consists of frequent voluntary modifications in the gait pattern to negotiate obstacles.After spinal cord injury,stepping over an obstacle becomes challenging.Stepping over an obstacle requires sensorimotor transformations in several structures of the brain,including the parietal cortex,premotor cortex,and motor cortex.Sensory information and planning are transformed into motor commands,which are sent from the motor cortex to spinal neuronal circuits to alter limb trajectory,coordinate the limbs,and maintain balance.After spinal cord injury,bidirectional communication between the brain and spinal cord is disrupted and animals,including humans,fail to voluntarily modify limb trajectory to step over an obstacle.Therefore,in this review,we discuss the neuromechanical control of stepping over an obstacle,why it fails after spinal cord injury,and how it recovers to a certain extent.展开更多
In the present experiment, Pavlovian fear conditioning was adopted to study the effects of different early rearing environments on fear conditioning in adult rats. Weaned rats were reared in three manipulable environm...In the present experiment, Pavlovian fear conditioning was adopted to study the effects of different early rearing environments on fear conditioning in adult rats. Weaned rats were reared in three manipulable environments (enriched, social and isolated conditions). After 8 weeks, fear conditioning (characterized by percentage of freezing) was observed and analyzed, and rats' weight, locomoter activity and foot-shock sensitivity were operated too. The results showed that: (1) Compared with control group, the level of conditioned fear was significantly increased in enriched group, but significantly decreased in isolated group; (2) Enriched and isolated conditions influenced rat's weight significantly; (3) Different rearing conditions have no effect on locomoter activity and foot-shock sensitivity. These results indicated that early enriched condition could improve the tone-evoked fear conditioning response, while isolated condition impaired the response.展开更多
Objective:To investigate the effect of BMSCs transplantation plus hyperbaric oxygen(HBO)on repair of rat SCI.Methods:Seventy five male rats were divided randomly into five groups:sham,vehicle.BMSCs transplantation gro...Objective:To investigate the effect of BMSCs transplantation plus hyperbaric oxygen(HBO)on repair of rat SCI.Methods:Seventy five male rats were divided randomly into five groups:sham,vehicle.BMSCs transplantation group,combination group,15 rats in each group.Every week after the SCI onset,all animals were evaluated for behavior outcome by Basso-BeattleBresnahan(BBB) score and inclined plane test.Axon recovery was examined with focal spinal cord tissue by electron microscope at 6 weeks after the SCI onset.HE staining and BrdU staining were performed to examine the BMSCs and lesion post injury.Somatosensory evoked potential(SEP) testing was performed to detect the recovery of neural conduction.Results from the behavior tests from combination group were significant higher than rats which received only transplantation or HBO treatment.Results from histopathology showed favorable recovery from combination group than other treatment groups.The number of BrdU+ in combination group were measureable more than transplantation group(P<0.05).The greatest decrease in TNF-α,IL-1β,IL-6.IFN-α determined by Elisa assay in combination group were evident too.Conclusions:BMSCs transplantation can promote the functional recovery of rat hind limbs after SCI,and its combination with HBO has a synergistic effect.展开更多
Locomotion behaviors are susceptible to disruption by a broad spectrum of chemicals and environmental stresses. However, no systematic testing of locomotion behavior defects induced by metal exposure has been conducte...Locomotion behaviors are susceptible to disruption by a broad spectrum of chemicals and environmental stresses. However, no systematic testing of locomotion behavior defects induced by metal exposure has been conducted in the model organism of nematode Caenorhabditis elegans. In this study, the acute toxicity from heavy metal exposure on the locomotion behaviors was analyzed in nematodes. Endpoints of head thrash, body bend, forward turn, backward turn, and Omega/U turn were chosen to evaluate the locomotio...展开更多
Though the studies of wheel-legged robots have achieved great success, the existing ones still have defects in load distribution, structure stability and carrying capacity. For overcoming these shortcomings, a new kin...Though the studies of wheel-legged robots have achieved great success, the existing ones still have defects in load distribution, structure stability and carrying capacity. For overcoming these shortcomings, a new kind of wheel-legged robot(Rolling-Wolf) is designed. It is actuated by means of ball screws and sliders, and each leg forms two stable triangle structures at any moment, which is simple but has high structure stability. The positional posture model and statics model are built and used to analyze the kinematic and mechanical properties of Rolling-Wolf. Based on these two models, important indexes for evaluating its motion performance are analyzed. According to the models and indexes, all of the structure parameters which influence the motion performance of Rolling-Wolf are optimized by the method of Archive-based Micro Genetic Algorithm(AMGA) by using Isight and Matlab software. Compared to the initial values, the maximum rotation angle of the thigh is improved by 4.17%, the maximum lifting height of the wheel is improved by 65.53%, and the maximum driving forces of the thigh and calf are decreased by 25.5% and 12.58%, respectively. The conspicuous optimization results indicate that Rolling-Wolf is much more excellent. The novel wheel-leg structure of Rolling-Wolf is efficient in promoting the load distribution, structure stability and carrying capacity of wheel-legged robot and the proposed optimization method provides a new approach for structure optimization.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.U2268210,52302474,52072249).
文摘Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail medium-or high-frequency frictional interactions are perceived as an essential reason of the high-order polygonal wear of railway wheels,which are potentially resulted by the flexible deformations of the train/track system or other external excitations.In this work,the effect of wheel/rail flexibility on polygonal wear evolution of heavy-haul locomotive wheels is explored with aid of the long-term wheel polygonal wear evolution simulations,in which different flexible modeling of the heavy-haul wheel/rail coupled system is implemented.Further,the mitigation measures for the polygonal wear of heavy-haul locomotive wheels are discussed.The results point out that the evolution of polygonal wear of heavy-haul locomotive wheels can be veritably simulated with consideration of the flexible effect of both wheelset and rails.Execution of mixed-line operation of heavy-haul trains and application of multicut wheel re-profiling can effectively reduce the development of wheel polygonal wear.This research can provide a deep-going understanding of polygonal wear evolution mechanism of heavy-haul locomotive wheels and its mitigation measures.
文摘Purpose–Auxiliary power system is an indispensable part of the train;the auxiliary systems of both electric locomotives and EMUs mainly are powered by one of the two ways,which are either from auxiliary windings of traction transformers or from DC-link voltage of traction converters.Powered by DC-link voltage of traction converters,the auxiliary systems were maintained of uninterruptable power supply with energy from electric braking.Meanwhile,powered by traction transformers,the auxiliary systems were always out of power while passing the neutral section of power supply grid and control system is powered by battery at this time.Design/methodology/approach–Uninterrupted power supply of auxiliary power system powered by auxiliary winding of traction transformer was studied.Failure reasons why previous solutions cannot be realized are analyzed.An uninterruptable power supply scheme for the auxiliary systems powered by auxiliary windings of traction transformers is proposed in this paper.The validity of the proposed scheme is verified by simulation and experimental results and on-site operation of an upgraded HXD3C type locomotive.This scheme is attractive for upgrading practical locomotives with the auxiliary systems powered by auxiliary windings of traction transformers.Findings–This scheme regenerates braking power supplied to auxiliary windings of traction transformers while a locomotive runs in the neutral section of the power supply grid.Control objectives of uninterrupted power supply technology are proposed,which are no overvoltage,no overcurrent and uninterrupted power supply.Originality/value–The control strategies of the scheme ensure both overvoltage free and inrush current free when a locomotive enters or leaves the neutral section.Furthermore,this scheme is cost low by employing updated control strategy of software and add both the two current sensors and two connection wires of hardware.
文摘We describe a system for turning the accumulator electric locomotives used in coal mines. This improves transport efficiency and decreases mine construction and production costs. The operating requirements, principles, working features and transmission system are discussed. This system has a simple structure and can be manufactured, transported and assembled easily. It, therefore, can handle accumulator locomotives of middle and small size.
基金Projects(52072249,51605315)supported by the National Natural Science Foundation of ChinaProject(E2018210052)supported by the Natural Science Foundation of Hebei Province,ChinaProject(TPL1707)supported by the Open Funds for the State Key Laboratory of Traction Power,China。
文摘To research the influence of asymmetric brake shoe forces(ABSF)induced by braking failure on the dynamic performance of six-axle locomotive,the static equilibrium model of three-axle bogie and dynamic model for locomotive are established.The coupling vibration equations of axle hung motor and wheelset are derived.For the air braking,the influence mechanism of ABSF on the wheel-rail asymmetric motion and force characteristics are discussed.It can be found that if the ABSF is applied in the front wheelset,all the wheelsets move laterally in the same direction.Once the ABSF occurs in the middle or rear one,other wheelsets may move laterally towards the opposite direction.The motion amplitude and direction of all wheelsets strictly depend on the resultant moment of suspension yawing moment and brake shoe asymmetric moment.For the asymmetric braking,the free lateral gap of axle-box could increase the wheelset motion amplitude,but could not change the moving direction.In both the straight line and curve,the ABSF may lead to wheelset misaligning motion,intensify the wheel-rail lateral dynamic interaction and deteriorate wheel-rail contact state.Especially for the steering wheelsets,the asymmetric braking increases the wheelset attack angle significantly,which forms the worst braking condition.
文摘Aim: A new concept of locomotive syndrome has been proposed by the Japanese Orthopaedic Association. The aim of this study is to clarify the utility of its self-checklist, “loco-check,” as a tool for estimating the physical dysfunction of elderly people. Methods: Subjects were 1124 community-dwelling Japanese people, 557 men and 567 women, aged 40-89 years. Information about the seven “loco-check” items was obtained from present inquiry sheets. Physical functions were examined by grip strength, knee extension strength, walking speed and one-leg standing time with open eyes. The averages of these test values, controlled for age and BMI, were compared between the “loco-check” (+) group and the “loco-check” (-) group. Also we examined about the trend of decline of physical function, together with SF36 physical function subscale score, as the number of the items chosen increased. Results: Adjusted average values of all four physical function examinations in the “lococheck” (+) group were significantly lower than those of the “loco-check” (-) group (all, p . Also the adjusted average values of the majority of four tests were significantly lower in those who checked each of the “loco-check” items than those who did not, for most of the items. It was also revealed that the more items subjects checked, the lower the adjusted average values were, except for one-leg standing time. It was also the case with SF36 physical function subscale score. Conclusion: We showed the utility of “loco-check” as a simple tool not only for noticing the physical dysfunction of elderly people, but also for estimating the extent of it, except for balancing ability, particularly by counting the number of checked items.
文摘The development of secondary health complications following spinal cord injury has been increasingly recognized by healthcare professionals as a major concern. These problems most specifically affect complete or near-complete spinal cord injury patients (e.g., those with minimal mobility), who are not typically rehabilitated with treadmill training approaches, because motor control and leg movements are largely impaired. However, recent pharmaceutical advances in central pattern generator activation may provide new therapeutic hopes for these spinal cord injury patients. This article provides a comprehensive overview, for the non-specialist, of the most recent advances in this field.
基金supported by NSF IOS-0745164Paralyzed Veterans of AmericaCraig H Neilsen Foundation
文摘The trace amines(TAs)are a family of endogenous amines with structural,metabolic,physiological and pharmacological similarities to classical monoamine neurotransmitters.The TA family includes tyramine,octopamine,β-phenylethylamine(PEA),and tryptamine(Figure 1).
基金National Natural Science Foundation of China(No.51867012)。
文摘The harsh operating environment and complex operating conditions of the mine electric locomotive affect the control performance of the locomotive traction motor.In order to improve the speed control performance of electric locomotive traction motors,a dynamic fractional-order sliding mode control(DFOSMC)algorithm considering uncertain factors was proposed.A load torque sliding mode observer was designed for the complex load disturbance of the traction motor,and its observations were integrated into the DFOSMC controller to overcome the influence of load disturbance.Finally,the stability of the designed controller was proved by Lyapunov's theorem.Besides,the control performance of DFOSMC controller was compared with integer-order sliding mode controller and fractional-order sliding mode controller through simulation experiments.Compared with integer-order sliding mode and fractional-order sliding mode controllers,the dynamic and static performance of the DFOSMC controller with load observation is better,and it has stronger anti-interference ability.The DFOSMC controller effectively improves the control performance of the traction motor of the mining locomotive.
文摘Hybrid locomotive concepts have been considered as a step towards converting the railway industry into a green transport mode.One of the challenges in integrating a hybrid locomotive in the train consist is that the battery pack in the locomotive needs to be recharged during a long-haul trip which requires stopping of the train.A typical battery pack requires about 1 h to recharge which is unacceptable.With the improvement in the charging system,it is now possible that the same capacity battery pack could be recharged in 10–12 min which can be a competitive option for the railway companies.This paper proposes a method based on simulation to evaluate the positioning of charging stations on a train network.A typical example of a heavy haul train operation hauled by diesel-electric and hybrid locomotives is used to demonstrate the method by using simulation softwares.The result of the simulation study show that the method developed in this paper can be used to evaluate the state of charge(SoC)status of a hybrid locomotive along the track.It is also shown that the SoC status obtained by the simulation method can be further used to assess the positions of charging stations along the track at the design stage.
文摘Based on annual statistical data collected by the Chinese Railway Statistic Center, the CO2 emissions of locomotives during 1975-2005 were calculated and the emission intensity and its dynamic characteristics were analyzed. The results show that the CO2 emissions of steam locomotives decreased while that of diesel locomotives increased with time, due to the continuous shift from steam to diesel and electric locomotives. The total CO2 emissions of steam and diesel locomo- tives in China decreased from 42.23 Mt in 1975 to 16.40 Mt in 2005. The emission intensity of CO2 from the two kinds of locomotives decreased at an average rate of 2.4 g (converted t kin)-1 per year. The percentage of the CO2 emissions of locomotives to the total CO2 emissions in the sector of transportation, storage and post in China also decreased persistently from 1980 to 2005.
基金supported by the China Academy of Railway Sciences Foundation[Grant No.2021YJ244].
文摘Purpose–The brake controller is a key component of the locomotive brake system.It is essential to study its safety.Design/methodology/approach–This paper summarizes and analyzes typical faults of the brake controller,and proposes four categories of faults:position sensor faults,microswitch faults,mechanical faults and communication faults.Suggestions and methods for improving the safety of the brake controller are also presented.Findings–In this paper,a self-judgment and self-learning dynamic calibration method is proposed,which integrates the linear error of the sensor and the manufacturing and assembly errors of the brake controller to solve the output drift.This paper also proposes a logic for diagnosing and handling microswitch faults.Suggestions are proposed for other faults of brake controller.Originality/value–The methods proposed in this paper can greatly improve the usability of the brake controller and reduce the failure rate.
文摘Introduction:Locomotion is a determinant of intrinsic capacity of older people and can be limited by dysfunction in locomotory organs,characterizing Locomotive Syndrome(LoS).Knowledge on locomotive problems and sarcopenia,and their interface with quality of life,in the oldest old in the literature is scarce.Objective:To evaluate the correlation between LoS and sarcopenia and their influence on quality of life in oldest old.Methods:A cross-sectional study of an observational,descriptive and analytical epidemiological survey in independent older adults aged 80 and over from São Paulo,Brazil and who participated in the third wave of the LOCOMOV Project,was carried out.Sociodemographic data,comorbidities,functioning in activities of daily living,physical functioning,quality of life,and presence of sarcopenia and LoS were assessed.The statistical analyses included the Test-for-Comparing-Two-Proportions,Pearson's Correlation Coefficient,the chi-Square test and Student´s t-test.Results:Thirty oldest old with a mean age of 89.1 years were evaluated.The prevalence of LoS was high(53.3%)and correlated significantly with chronic pain(p-value 0.024),worse performance on the SPPB and Gait speed(p-value<0.001).Sarcopenia was not correlated with LoS,but worse quality of life on the physical domain was significantly associated with LoS(p-value<0.001)regardless of the presence of sarcopenia.Conclusions:LoS was highly prevalent among the oldest old studied and negatively impacted their quality of life,regardless of the presence of sarcopenia.
基金Supported by National Natural Science Foundation of China (Grant Nos. 52375003, 52205006)National Key R&D Program of China (Grant No. 2019YFB1309600)。
文摘To improve locomotion and operation integration, this paper presents an integrated leg-arm quadruped robot(ILQR) that has a reconfigurable joint. First, the reconfigurable joint is designed and assembled at the end of the legarm chain. When the robot performs a task, reconfigurable configuration and mode switching can be achieved using this joint. In contrast from traditional quadruped robots, this robot can stack in a designated area to optimize the occupied volume in a nonworking state. Kinematics modeling and dynamics modeling are established to evaluate the mechanical properties for multiple modes. All working modes of the robot are classified, which can be defined as deployable mode, locomotion mode and operation mode. Based on the stability margin and mechanical modeling, switching analysis and evaluation between each mode is carried out. Finally, the prototype experimental results verify the function realization and switching stability of multimode and provide a design method to integrate and perform multimode for quadruped robots with deployable characteristics.
文摘The locomotive turntable is an essential device for the steering operation of the railway locomotive. This paper has introduced the structural composition and characteristics of the box girder locomotive turntable, has ana- lyzed its vertical load, horizontal load and torsional load, and has established a mechanical model for the symmet- rical structure of the box girder locomotive turntable under the action of positive and negative symmetric vertical loads. Furthermore, it has also demonstrated the safe and reliable structural performance of this type of locomotive turntable on the basis of the practical example of a 35 m box girder locomotive turntable.
文摘Aim: This dissection study was conducted to verify if the Myofascial kinetic lines, outlined in detail in humans and recently documented in horses, were present in dogs. These dynamic lines present rows of interconnected muscles, myofascia and other fascia structures, which influence the biomechanics of the spine and limbs. Methods: Forty-two dogs of different breeds and genders were dissected, imaged, and videoed. Results: Similar kinetic lines were verified in the dog, as described in humans and horses, and additionally, three new branches of the lines were discovered. The kinetic lines described were three superficial lines: Dorsal, Ventral, and Lateral, which all started in the hindlimb and ended in the temporal and occipital regions. These lines act respectively in spinal extension, flexion, and lateral flexion. Three profound lines, which started in the tail and ended in the head. The Deep Dorsal Line followed the transversospinal myofascia. The Deep Ventral Line showed an additional start deep in the medial hind limb, continued in the hypaxial myofascia, and enveloped all the viscera. Also, the Deep Lateral Line started in the hindlimb but parted along the trunk in the deep lateral myofascial structures. Two helical lines crossed the midline two or three times and served to rotate the spine. The Functional Line established a sling from the axilla to the contralateral stifle and presented a new ipsilateral branch. The Spiral Line connected the head and the ipsilateral tarsus and additionally presented a new straight branch. The four front limb lines describe their motion: the Front Limb Protraction and Retraction, Adduction, and Abduction Lines. Conclusion: The canine lines mirrored the equine and human lines with exceptions due to differences in anatomy, foot posture, lumbosacral flexibility, and their biomechanical constitution as predator versus prey animals. Additionally, three new canine branches were verified and described.
文摘Every day walking consists of frequent voluntary modifications in the gait pattern to negotiate obstacles.After spinal cord injury,stepping over an obstacle becomes challenging.Stepping over an obstacle requires sensorimotor transformations in several structures of the brain,including the parietal cortex,premotor cortex,and motor cortex.Sensory information and planning are transformed into motor commands,which are sent from the motor cortex to spinal neuronal circuits to alter limb trajectory,coordinate the limbs,and maintain balance.After spinal cord injury,bidirectional communication between the brain and spinal cord is disrupted and animals,including humans,fail to voluntarily modify limb trajectory to step over an obstacle.Therefore,in this review,we discuss the neuromechanical control of stepping over an obstacle,why it fails after spinal cord injury,and how it recovers to a certain extent.
基金National Natural Science Foundation of China(30770689)Scientific Research Fund of Hunan Provincial Education Department (05B045)National Basic Research Program of China (2002CB410803-04)
文摘In the present experiment, Pavlovian fear conditioning was adopted to study the effects of different early rearing environments on fear conditioning in adult rats. Weaned rats were reared in three manipulable environments (enriched, social and isolated conditions). After 8 weeks, fear conditioning (characterized by percentage of freezing) was observed and analyzed, and rats' weight, locomoter activity and foot-shock sensitivity were operated too. The results showed that: (1) Compared with control group, the level of conditioned fear was significantly increased in enriched group, but significantly decreased in isolated group; (2) Enriched and isolated conditions influenced rat's weight significantly; (3) Different rearing conditions have no effect on locomoter activity and foot-shock sensitivity. These results indicated that early enriched condition could improve the tone-evoked fear conditioning response, while isolated condition impaired the response.
基金supported by a grant from Yun Nan province united foundation(2008CD006)Yun Nan province education department foundation(2011y184)
文摘Objective:To investigate the effect of BMSCs transplantation plus hyperbaric oxygen(HBO)on repair of rat SCI.Methods:Seventy five male rats were divided randomly into five groups:sham,vehicle.BMSCs transplantation group,combination group,15 rats in each group.Every week after the SCI onset,all animals were evaluated for behavior outcome by Basso-BeattleBresnahan(BBB) score and inclined plane test.Axon recovery was examined with focal spinal cord tissue by electron microscope at 6 weeks after the SCI onset.HE staining and BrdU staining were performed to examine the BMSCs and lesion post injury.Somatosensory evoked potential(SEP) testing was performed to detect the recovery of neural conduction.Results from the behavior tests from combination group were significant higher than rats which received only transplantation or HBO treatment.Results from histopathology showed favorable recovery from combination group than other treatment groups.The number of BrdU+ in combination group were measureable more than transplantation group(P<0.05).The greatest decrease in TNF-α,IL-1β,IL-6.IFN-α determined by Elisa assay in combination group were evident too.Conclusions:BMSCs transplantation can promote the functional recovery of rat hind limbs after SCI,and its combination with HBO has a synergistic effect.
基金the Southeast Uni-versity Foundation for Excellent Young Scholars (No.4023001013)the NIH,National Center for Foundation from Research Resource,USA
文摘Locomotion behaviors are susceptible to disruption by a broad spectrum of chemicals and environmental stresses. However, no systematic testing of locomotion behavior defects induced by metal exposure has been conducted in the model organism of nematode Caenorhabditis elegans. In this study, the acute toxicity from heavy metal exposure on the locomotion behaviors was analyzed in nematodes. Endpoints of head thrash, body bend, forward turn, backward turn, and Omega/U turn were chosen to evaluate the locomotio...
基金Supported by National Hi-tech Research and Development Program of China (863 Program,Grant No.CDJZR13110073)
文摘Though the studies of wheel-legged robots have achieved great success, the existing ones still have defects in load distribution, structure stability and carrying capacity. For overcoming these shortcomings, a new kind of wheel-legged robot(Rolling-Wolf) is designed. It is actuated by means of ball screws and sliders, and each leg forms two stable triangle structures at any moment, which is simple but has high structure stability. The positional posture model and statics model are built and used to analyze the kinematic and mechanical properties of Rolling-Wolf. Based on these two models, important indexes for evaluating its motion performance are analyzed. According to the models and indexes, all of the structure parameters which influence the motion performance of Rolling-Wolf are optimized by the method of Archive-based Micro Genetic Algorithm(AMGA) by using Isight and Matlab software. Compared to the initial values, the maximum rotation angle of the thigh is improved by 4.17%, the maximum lifting height of the wheel is improved by 65.53%, and the maximum driving forces of the thigh and calf are decreased by 25.5% and 12.58%, respectively. The conspicuous optimization results indicate that Rolling-Wolf is much more excellent. The novel wheel-leg structure of Rolling-Wolf is efficient in promoting the load distribution, structure stability and carrying capacity of wheel-legged robot and the proposed optimization method provides a new approach for structure optimization.