Based on the inertial navigation system, the influences of the excursion of the inertial navigation system and the measurement error of the wireless pressure altimeter on the rotation and scale of the real image are q...Based on the inertial navigation system, the influences of the excursion of the inertial navigation system and the measurement error of the wireless pressure altimeter on the rotation and scale of the real image are quantitatively analyzed in scene matching. The log-polar transform (LPT) is utilized and an anti-rotation and anti- scale image matching algorithm is proposed based on the image edge feature point extraction. In the algorithm, the center point is combined with its four-neighbor points, and the corresponding computing process is put forward. Simulation results show that in the image rotation and scale variation range resulted from the navigation system error and the measurement error of the wireless pressure altimeter, the proposed image matching algo- rithm can satisfy the accuracy demands of the scene aided navigation system and provide the location error-correcting information of the system.展开更多
基于曲线演化的水平集算法近来已被广泛应用于图像分割中,针对其计算速度慢的问题,提出一种新的基于改进窄带法的图像分割方法INBM(Improved Narrow Band Method)。INBM首先将均匀采样的图像映射到对数极坐标系中,由视网膜空间分辨率机...基于曲线演化的水平集算法近来已被广泛应用于图像分割中,针对其计算速度慢的问题,提出一种新的基于改进窄带法的图像分割方法INBM(Improved Narrow Band Method)。INBM首先将均匀采样的图像映射到对数极坐标系中,由视网膜空间分辨率机制可知,注视点都在图像兴趣区,由此形成初始轮廓,然后用改进的窄带水平集(Level Set)方法演化曲线得到最终分割结果。改进窄带法是通过降低窄带区域内的水平集函数求解个数,来减少计算时间。实验结果表明,该方法大大提高了图像分割的速度。展开更多
The log-polar transform (LPT) is introduced into the star identification because of its rotation invariance. An improved autonomous star identification algorithm is proposed in this paper to avoid the circular shift...The log-polar transform (LPT) is introduced into the star identification because of its rotation invariance. An improved autonomous star identification algorithm is proposed in this paper to avoid the circular shift of the feature vector and to reduce the time consumed in the star identification algorithm using LPT. In the proposed algorithm, the star pattern of the same navigation star remains unchanged when the stellar image is rotated, which makes it able to reduce the star identification time. The logarithmic values of the plane distances between the navigation and its neighbor stars are adopted to structure the feature vector of the navigation star, which enhances the robustness of star identification. In addition, some efforts are made to make it able to find the identification result with fewer comparisons, instead of searching the whole feature database. The simulation results demonstrate that the proposed algorithm can effectively acceldrate the star identification. Moreover, the recognition rate and robustness by the proposed algorithm are better than those by the LPT algorithm and the modified grid algorithm.展开更多
Log-polar transformation(LPT)is widely used in image registration due to its scale and rotation invariant properties.Through LPT,rotation and scale transformation can be made into translation displacement in log-polar...Log-polar transformation(LPT)is widely used in image registration due to its scale and rotation invariant properties.Through LPT,rotation and scale transformation can be made into translation displacement in log-polar coordinates,and phase correlation technique can be used to get the displacement.In LPT based image registration,constant samples in digitalization processing produce less precise and effective results.Thus,dynamic log-polar transformation(DLPT)is used in this paper.DLPT is a method that generates several sample sets in axes to produce several results and only the effective results are used to get the final results by using statistical approach.Therefore,DLPT can get more precise and effective transformation results than the conventional LPT.Mutual information(MI)is a similarity measure to align two images and has been used in image registration for a long time.An optimal transform for image registration can be obtained by maximizing MI between the two images.Image registration based on MI is robust in noisy,occlusion and illumination changing circumstance.In this paper,we study image registration using MI and DLPT.Experiments with digitalizing images and with real image datasets are performed,and the experimental results show that the combination of MI with DLPT is an effective and precise method for image registration.展开更多
Recognizing the target from a rotated and scaled image is an important and difficult task for computer vision. Visual system of humans has a unique space variant resolution mechanism(SVR) and log-polar transformations...Recognizing the target from a rotated and scaled image is an important and difficult task for computer vision. Visual system of humans has a unique space variant resolution mechanism(SVR) and log-polar transformations(LPT) is a mapping method that is invariant to rotation and scale. Motivated by biological vision, we propose a novel global LPT based template-matching algorithm(GLPT-TM) which is invariant to rotational and scale changes; and with pigeon-inspired optimization(PIO) used to optimize search strategy, a hybrid model of SVR and pigeon-inspired optimization(SVRPIO) is proposed to accomplish object recognition for unmanned aerial vehicles(UAV) with rotational and scale changes of the target. To demonstrate the efficiency, effectiveness and reliability of the proposed method, a series of experiments are carried out. By rotating and scaling the sample image randomly and recognizing the target with the method, the experimental results demonstrate that our proposed method is not only efficient due to the optimization, but effective and accurate in recognizing the target for UAV.展开更多
文摘Based on the inertial navigation system, the influences of the excursion of the inertial navigation system and the measurement error of the wireless pressure altimeter on the rotation and scale of the real image are quantitatively analyzed in scene matching. The log-polar transform (LPT) is utilized and an anti-rotation and anti- scale image matching algorithm is proposed based on the image edge feature point extraction. In the algorithm, the center point is combined with its four-neighbor points, and the corresponding computing process is put forward. Simulation results show that in the image rotation and scale variation range resulted from the navigation system error and the measurement error of the wireless pressure altimeter, the proposed image matching algo- rithm can satisfy the accuracy demands of the scene aided navigation system and provide the location error-correcting information of the system.
文摘基于曲线演化的水平集算法近来已被广泛应用于图像分割中,针对其计算速度慢的问题,提出一种新的基于改进窄带法的图像分割方法INBM(Improved Narrow Band Method)。INBM首先将均匀采样的图像映射到对数极坐标系中,由视网膜空间分辨率机制可知,注视点都在图像兴趣区,由此形成初始轮廓,然后用改进的窄带水平集(Level Set)方法演化曲线得到最终分割结果。改进窄带法是通过降低窄带区域内的水平集函数求解个数,来减少计算时间。实验结果表明,该方法大大提高了图像分割的速度。
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61172138 and 61401340)the Open Research Fund of the Academy of Satellite Application,China(Grant No.2014 CXJJ-DH 12)+3 种基金the Fundamental Research Funds for the Central Universities,China(Grant Nos.JB141303 and201413B)the Natural Science Basic Research Plan in Shaanxi Province,China(Grant No.2013JQ8040)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20130203120004)the Xi’an Science and Technology Plan,China(Grant.No CXY1350(4))
文摘The log-polar transform (LPT) is introduced into the star identification because of its rotation invariance. An improved autonomous star identification algorithm is proposed in this paper to avoid the circular shift of the feature vector and to reduce the time consumed in the star identification algorithm using LPT. In the proposed algorithm, the star pattern of the same navigation star remains unchanged when the stellar image is rotated, which makes it able to reduce the star identification time. The logarithmic values of the plane distances between the navigation and its neighbor stars are adopted to structure the feature vector of the navigation star, which enhances the robustness of star identification. In addition, some efforts are made to make it able to find the identification result with fewer comparisons, instead of searching the whole feature database. The simulation results demonstrate that the proposed algorithm can effectively acceldrate the star identification. Moreover, the recognition rate and robustness by the proposed algorithm are better than those by the LPT algorithm and the modified grid algorithm.
基金the National Natural Science Foundation of China(Nos.61440016,61273225 and 61201423)the Natural Science Foundation of Hubei Province(No.2014CFB247)
文摘Log-polar transformation(LPT)is widely used in image registration due to its scale and rotation invariant properties.Through LPT,rotation and scale transformation can be made into translation displacement in log-polar coordinates,and phase correlation technique can be used to get the displacement.In LPT based image registration,constant samples in digitalization processing produce less precise and effective results.Thus,dynamic log-polar transformation(DLPT)is used in this paper.DLPT is a method that generates several sample sets in axes to produce several results and only the effective results are used to get the final results by using statistical approach.Therefore,DLPT can get more precise and effective transformation results than the conventional LPT.Mutual information(MI)is a similarity measure to align two images and has been used in image registration for a long time.An optimal transform for image registration can be obtained by maximizing MI between the two images.Image registration based on MI is robust in noisy,occlusion and illumination changing circumstance.In this paper,we study image registration using MI and DLPT.Experiments with digitalizing images and with real image datasets are performed,and the experimental results show that the combination of MI with DLPT is an effective and precise method for image registration.
基金the Aeronautical Foundation of China(Grant No.2015ZA51013)the National Natural Science Foundation of China(Grant No.61673327)
文摘Recognizing the target from a rotated and scaled image is an important and difficult task for computer vision. Visual system of humans has a unique space variant resolution mechanism(SVR) and log-polar transformations(LPT) is a mapping method that is invariant to rotation and scale. Motivated by biological vision, we propose a novel global LPT based template-matching algorithm(GLPT-TM) which is invariant to rotational and scale changes; and with pigeon-inspired optimization(PIO) used to optimize search strategy, a hybrid model of SVR and pigeon-inspired optimization(SVRPIO) is proposed to accomplish object recognition for unmanned aerial vehicles(UAV) with rotational and scale changes of the target. To demonstrate the efficiency, effectiveness and reliability of the proposed method, a series of experiments are carried out. By rotating and scaling the sample image randomly and recognizing the target with the method, the experimental results demonstrate that our proposed method is not only efficient due to the optimization, but effective and accurate in recognizing the target for UAV.