期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Higher-order expansions of powered extremes of logarithmic general error distribution
1
作者 TAN Xiao-feng LI Li-hui 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第1期47-54,共8页
In this paper,Let M_(n)denote the maximum of logarithmic general error distribution with parameter v≥1.Higher-order expansions for distributions of powered extremes M_(n)^(p)are derived under an optimal choice of nor... In this paper,Let M_(n)denote the maximum of logarithmic general error distribution with parameter v≥1.Higher-order expansions for distributions of powered extremes M_(n)^(p)are derived under an optimal choice of normalizing constants.It is shown that M_(n)^(p),when v=1,converges to the Frechet extreme value distribution at the rate of 1/n,and if v>1 then M_(n)^(p)converges to the Gumbel extreme value distribution at the rate of(loglogn)^(2)=(log n)^(1-1/v). 展开更多
关键词 logarithmic general error distribution convergence rate higher-order expansion powered ex-treme
下载PDF
Distributional expansion of maximum from logarithmic general error distribution 被引量:3
2
作者 YANG Geng LIAO Xin PENG Zuo-xiang 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2016年第2期157-164,共8页
Logarithmic general error distribution is an extension of lognormal distribution. In this paper, with optimal norming constants the higher-order expansion of distribution of partial maximum of logarithmic general erro... Logarithmic general error distribution is an extension of lognormal distribution. In this paper, with optimal norming constants the higher-order expansion of distribution of partial maximum of logarithmic general error distribution is derived. 展开更多
关键词 Extreme value distribution Higher-order expansion logarithmic general error distribution Maximum
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部