To overcome the shortcomings of the Lee image enhancement algorithm and its improvement based on the logarithmic image processing(LIP) model, this paper proposes what we believe to be an effective image enhancement al...To overcome the shortcomings of the Lee image enhancement algorithm and its improvement based on the logarithmic image processing(LIP) model, this paper proposes what we believe to be an effective image enhancement algorithm. This algorithm introduces fuzzy entropy, makes full use of neighborhood information, fuzzy information and human visual characteristics.To enhance an image, this paper first carries out the reasonable fuzzy-3 partition of its histogram into the dark region, intermediate region and bright region. It then extracts the statistical characteristics of the three regions and adaptively selects the parameter αaccording to the statistical characteristics of the image’s gray-scale values. It also adds a useful nonlinear transform, thus increasing the ubiquity of the algorithm. Finally, the causes for the gray-scale value overcorrection that occurs in the traditional image enhancement algorithms are analyzed and their solutions are proposed.The simulation results show that our image enhancement algorithm can effectively suppress the noise of an image, enhance its contrast and visual effect, sharpen its edge and adjust its dynamic range.展开更多
A new method based on gray-natural logarithm ratio bilateral filtering is presented for image smoothing in this work. A new gray-natural logarithm ratio range filter kernel, leading to adaptive magnitude from image gr...A new method based on gray-natural logarithm ratio bilateral filtering is presented for image smoothing in this work. A new gray-natural logarithm ratio range filter kernel, leading to adaptive magnitude from image gray distinction information, is pointed out for the bilateral filtering. The new method can not only well restrain noise but also keep much more weak edges and details of an image, and preserve the original color transition of color images. Experimental results show the effectiveness for image denoising with our method.展开更多
基金supported by the National Natural Science Foundation of China(61472324)
文摘To overcome the shortcomings of the Lee image enhancement algorithm and its improvement based on the logarithmic image processing(LIP) model, this paper proposes what we believe to be an effective image enhancement algorithm. This algorithm introduces fuzzy entropy, makes full use of neighborhood information, fuzzy information and human visual characteristics.To enhance an image, this paper first carries out the reasonable fuzzy-3 partition of its histogram into the dark region, intermediate region and bright region. It then extracts the statistical characteristics of the three regions and adaptively selects the parameter αaccording to the statistical characteristics of the image’s gray-scale values. It also adds a useful nonlinear transform, thus increasing the ubiquity of the algorithm. Finally, the causes for the gray-scale value overcorrection that occurs in the traditional image enhancement algorithms are analyzed and their solutions are proposed.The simulation results show that our image enhancement algorithm can effectively suppress the noise of an image, enhance its contrast and visual effect, sharpen its edge and adjust its dynamic range.
基金the National Natural Science Foundation of China under Grant No.60778046.
文摘A new method based on gray-natural logarithm ratio bilateral filtering is presented for image smoothing in this work. A new gray-natural logarithm ratio range filter kernel, leading to adaptive magnitude from image gray distinction information, is pointed out for the bilateral filtering. The new method can not only well restrain noise but also keep much more weak edges and details of an image, and preserve the original color transition of color images. Experimental results show the effectiveness for image denoising with our method.