In this work we suggestion new methods investigation the model Volterra type integral equation with logarithmic singularity, kernel which consisting from composition polynomial function with logarithmic singularity an...In this work we suggestion new methods investigation the model Volterra type integral equation with logarithmic singularity, kernel which consisting from composition polynomial function with logarithmic singularity and function with singular point. The problem investigation this type integral equation at n = 2m reduce to problem investigate the Volterra type integral equation (1) for n = 2 the theory for which was constructed in [2]. In this work, we investigation integral equation (1) at = 2m + 1 In this case, we investigate integral equation (1) reduction it's to m integral equation type [2] φ(x)+∫xa[p1+p2 ln(x-a/t-a)]φ(t)/t-a dt=f(x)and one the following integral equation [1] ω(x)+p3∫xω(t)/ a t-adt=g(x).展开更多
In this paper,new Levin methods are presented for calculating oscillatory integrals with algebraic and/or logarithmic singularities.To avoid singularities,the technique of singularity separation is applied and then th...In this paper,new Levin methods are presented for calculating oscillatory integrals with algebraic and/or logarithmic singularities.To avoid singularities,the technique of singularity separation is applied and then the singular ODE occurring in classic Levin methods is converted into two kinds of non-singular ODEs.The solutions of one can be obtained explicitly,while the other kind of ODEs can be solved efficiently by collocation methods.The proposed methods can attain arbitrarily high asymptotic orders and also enjoy superalgebraic convergence with respect to the number of collocation points.Several numerical experiments are presented to validate the efficiency of the proposed methods.展开更多
文摘In this work we suggestion new methods investigation the model Volterra type integral equation with logarithmic singularity, kernel which consisting from composition polynomial function with logarithmic singularity and function with singular point. The problem investigation this type integral equation at n = 2m reduce to problem investigate the Volterra type integral equation (1) for n = 2 the theory for which was constructed in [2]. In this work, we investigation integral equation (1) at = 2m + 1 In this case, we investigate integral equation (1) reduction it's to m integral equation type [2] φ(x)+∫xa[p1+p2 ln(x-a/t-a)]φ(t)/t-a dt=f(x)and one the following integral equation [1] ω(x)+p3∫xω(t)/ a t-adt=g(x).
基金supported by National Natural Science Foundation of China(Grant No.11771454)Research Fund of National University of Defense Technology(Grant No.ZK19-19)。
文摘In this paper,new Levin methods are presented for calculating oscillatory integrals with algebraic and/or logarithmic singularities.To avoid singularities,the technique of singularity separation is applied and then the singular ODE occurring in classic Levin methods is converted into two kinds of non-singular ODEs.The solutions of one can be obtained explicitly,while the other kind of ODEs can be solved efficiently by collocation methods.The proposed methods can attain arbitrarily high asymptotic orders and also enjoy superalgebraic convergence with respect to the number of collocation points.Several numerical experiments are presented to validate the efficiency of the proposed methods.