In order to improve reservoir fluid recognition, the sensitivity of array resistivity response to the difference of the invasion properties in both oil-bearing layers and water layers is analyzed. Then the primary inv...In order to improve reservoir fluid recognition, the sensitivity of array resistivity response to the difference of the invasion properties in both oil-bearing layers and water layers is analyzed. Then the primary inversion is carried out based on the array resistivity log. The mud invasion process is numerically simulated based on the oil-water flow equation and water convection diffusion equation. The results show that the radial resistivity of a fresh mud-invaded oil-bearing layer presents complex distribution characteristics, such as nonlinear increase, increasing to decreasing and low resistivity annulus, and the resistive invasion profile of a water layer is monotonic. Under specific conditions, array resistivity log can reflect these changes and the array induction log is more sensitive. Nevertheless, due to the effect of factors like large invasion depth, reservoir physical and oil-bearing properties, the measured apparent resistivity may differ greatly from the actual mud filtrate invasion profile in an oil-bearing layer. We proposed a five-parameter formation model to simulate the complex resistivity distribution of fresh mud-invaded formation. Then, based on the principle of non-linear least squares, the measured array resistivity log is used for inversion with the Marquardt method. It is demonstrated that the inverted resistivity is typically non-monotonic in oil-bearing layers and is monotonic in water layers. Processing of some field data shows that this is helpful in achieving efficient reservoir fluid recognition.展开更多
Voltage scaling has been extensively used in industry for decades to reduce power consumption.In recent years,exploring digital circuit operation in moderate inversion has created an interest among researchers due to ...Voltage scaling has been extensively used in industry for decades to reduce power consumption.In recent years,exploring digital circuit operation in moderate inversion has created an interest among researchers due to its immense capability to provide a perfect tradeoff between high performance and low energy operation.But circuits operating in moderate inversion are susceptible to process variations and variability.To compute variability,statistical parameters such as the probability density function(PDF)and cumulative distribution function(CDF)are required.This paper presents an analytical model framework for delay calculations utilizing log skew normal distribution for ultradeep submicron technology nodes up to 22 nm.The CDF of the proposed model is utilized to calculate minimum and maximum delays with 3σ-accuracy providing better accuracy than the conventional methods.The obtained results are also compared with Monte Carlo simulations with errors lying within the acceptable range of 2%-4%.展开更多
基金funded by the National Natural Science Foundation (41174009)National Major Science &Technology Projects (2011ZX05020, 2011ZX05035,2011ZX05003, 2011ZX05007)
文摘In order to improve reservoir fluid recognition, the sensitivity of array resistivity response to the difference of the invasion properties in both oil-bearing layers and water layers is analyzed. Then the primary inversion is carried out based on the array resistivity log. The mud invasion process is numerically simulated based on the oil-water flow equation and water convection diffusion equation. The results show that the radial resistivity of a fresh mud-invaded oil-bearing layer presents complex distribution characteristics, such as nonlinear increase, increasing to decreasing and low resistivity annulus, and the resistive invasion profile of a water layer is monotonic. Under specific conditions, array resistivity log can reflect these changes and the array induction log is more sensitive. Nevertheless, due to the effect of factors like large invasion depth, reservoir physical and oil-bearing properties, the measured apparent resistivity may differ greatly from the actual mud filtrate invasion profile in an oil-bearing layer. We proposed a five-parameter formation model to simulate the complex resistivity distribution of fresh mud-invaded formation. Then, based on the principle of non-linear least squares, the measured array resistivity log is used for inversion with the Marquardt method. It is demonstrated that the inverted resistivity is typically non-monotonic in oil-bearing layers and is monotonic in water layers. Processing of some field data shows that this is helpful in achieving efficient reservoir fluid recognition.
文摘Voltage scaling has been extensively used in industry for decades to reduce power consumption.In recent years,exploring digital circuit operation in moderate inversion has created an interest among researchers due to its immense capability to provide a perfect tradeoff between high performance and low energy operation.But circuits operating in moderate inversion are susceptible to process variations and variability.To compute variability,statistical parameters such as the probability density function(PDF)and cumulative distribution function(CDF)are required.This paper presents an analytical model framework for delay calculations utilizing log skew normal distribution for ultradeep submicron technology nodes up to 22 nm.The CDF of the proposed model is utilized to calculate minimum and maximum delays with 3σ-accuracy providing better accuracy than the conventional methods.The obtained results are also compared with Monte Carlo simulations with errors lying within the acceptable range of 2%-4%.