This paper addresses the problems faced in programmable logic controller(PLC)teaching in vocational colleges and proposes countermeasures to overcome these challenges.The study emphasizes the need for a deeper underst...This paper addresses the problems faced in programmable logic controller(PLC)teaching in vocational colleges and proposes countermeasures to overcome these challenges.The study emphasizes the need for a deeper understanding of fundamental concepts and the integration of practical application in PLC education.It suggests involving students in teacher-led projects to enhance their programming skills and problem-solving skills.Additionally,the paper highlights the importance of interactive learning and collaborative discussions to foster student engagement.Furthermore,it emphasizes the cultivation of innovation consciousness through participation in innovation competitions and projects.The implementation of these strategies has shown positive results in improving learning outcomes and preparing students for careers in automation and control.This research contributes to the development of effective teaching approaches in PLC education in vocational colleges.展开更多
This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different he...This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance.展开更多
An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and c...An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and control of the weld pool depth with ANN and theintelligent control for weld seam tracking with FLC. The proposed neural network can produce highlycomplex nonlinear multi-variable model of the GTAW process that offers the accurate prediction ofwelding penetration depth. A self-adjusting fuzzy controller used for seam tracking adjusts thecontrol parameters on-line automatically according to the tracking errors so that the torch positioncan be controlled accurately.展开更多
Fuzzy logic controller adopting unevenly-distributed membership function was presented with the purpose of enhancing performance of the temperature control precision and robustness for the chamber cooling system.Histo...Fuzzy logic controller adopting unevenly-distributed membership function was presented with the purpose of enhancing performance of the temperature control precision and robustness for the chamber cooling system.Histogram equalization and noise detection were performed to modify the evenly-distributed membership functions of error and error change rate into unevenly-distributed membership functions.Then,the experimental results with evenly and unevenly distributed membership functions were compared under the same outside environment conditions.The experimental results show that the steady-state error is reduced around 40% and the noise disturbance is rejected successfully even though noise range is 60% of the control precision range.The control precision is improved by reducing the steady-state error and the robustness is enhanced by rejecting noise disturbance through the fuzzy logic controller with unevenly-distributed membership function.Moreover,the system energy efficiency and lifetime of electronic expansion valve(EEV) installed in chamber cooling system are improved by adopting the unevenly-distributed membership function.展开更多
The timing and master control logic (MCL) units are the most important function units of the diagnostic neutral beam (DNB) power supply control system. The units control the operation of nine power supply subsyste...The timing and master control logic (MCL) units are the most important function units of the diagnostic neutral beam (DNB) power supply control system. The units control the operation of nine power supply subsystems of the DNB system, and provide protection for the DNB system from faults such as beam source arc down. Based on the characteristics of the DNB power supply system, the timing and MCL units have been designed, fabricated and tested. Experiments prove that the timing unit is convenient, flexible and reliable, and the MCL is functional.展开更多
Increase of elevator speed brings about amplified vibrations of high-speed elevator. In order to reduce the horizontal vibrations of high-speed elevator, a new type of hydraulic active guide roller system based on fuz...Increase of elevator speed brings about amplified vibrations of high-speed elevator. In order to reduce the horizontal vibrations of high-speed elevator, a new type of hydraulic active guide roller system based on fuzzy logic controller is developed. First the working principle of the hydraulic guide system is introduced, then the dynamic model of the horizontal vibrations for elevator cage with active guide roller system and the mathematical model of the hydraulic system are given. A fuzzy logic controller for the hydraulic system is designed to control the hydraulic actuator. To improve the control performance, preview compensation for the controller is provided. Finally, simulation and experiments are executed to verify the hydraulic active guide roller system and the control strategy. Both the simulation and experimental results indicate that the hydraulic active guide roller system can reduce the horizontal vibrations of the elevator effectively and has better effects than the passive one, and the fuzzy logic controller with preview compensation can give superior control performance.展开更多
In industrial process control, fluid level control is one of the most basic aspects. Many control methods such as on-off, linear and PID (Proportional Integral Derivative) were developed time by time and used for prec...In industrial process control, fluid level control is one of the most basic aspects. Many control methods such as on-off, linear and PID (Proportional Integral Derivative) were developed time by time and used for precise controlling of fluid level. Due to flaws of PID controller in non-linear type processes such as inertial lag, time delay and time varying etc., there is a need of alternative design methodology that can be applied in both linear and non-linear systems and it can be execute with fuzzy concept. By using fuzzy logic, designer can realize lower development cost, superior feature and better end product. In this paper, level of fluid in tank is control by using fuzzy logic concept. For this purpose, a simulation system of fuzzy logic controller for fluid level control is designed using simulation packages of MATLAB software such as Fuzzy Logic Toolbox and Simulink. The designed fuzzy logic controller first takes information about inflow and outflow of fluid in tank than maintain the level of fluid in tank by controlling its output valve. In this paper, a controller is designed on five rules using two-input and one-output parameters. At the end, simulation results of fuzzy logic based controller are compared with classical PID controller and it shows that fuzzy logic controller has better stability, fast response and small overshoot.展开更多
This article investigates the power quality enhancement in power system using one of the most famous series converter based FACTS controller like IPFC (Interline Power Flow Controller) in Power Injection Model (PIM). ...This article investigates the power quality enhancement in power system using one of the most famous series converter based FACTS controller like IPFC (Interline Power Flow Controller) in Power Injection Model (PIM). The parameters of PIM are derived with help of the Newton-Raphson power flow algorithm. In general, a sample test power system without FACTs devices has generated more reactive power, decreased real power, more harmonics, small power factor and poor dynamic performance under line and load variations. In order to improve the real power, compensating the reactive power, proficient power factor and excellent load voltage regulation in the sample test power system, an IPFC is designed. The D-Q technique is utilized here to derive the reference current of the converter and its D.C link capacitor voltage is regulated. Also, the reference voltage of the inverter is arrived by park transformation technique and its load voltage is controlled. Here, a sample 230 KV test power system is taken for study. Further as the conventional PI controllers are designed at one nominal operating point they are not competent to respond satisfactorily in dynamic operating conditions. This can be circumvented by a Fuzzy and Neural network based IPFC and its detailed Simulink model is developed using MATLAB and the overall performance analysis is carried out under different operating state of affairs.展开更多
The Unified Power Quality Conditioner (UPQC) plays an important role in the constrained delivery of electrical power from the source to an isolated pool of load or from a source to the grid. The proposed system can co...The Unified Power Quality Conditioner (UPQC) plays an important role in the constrained delivery of electrical power from the source to an isolated pool of load or from a source to the grid. The proposed system can compensate voltage sag/swell, reactive power compensation and harmonics in the linear and nonlinear loads. In this work, the off line drained data from conventional fuzzy logic controller. A novel control system with a Combined Neural Network (CNN) is used instead of the traditionally four fuzzy logic controllers. The performance of combined neural network controller compared with Proportional Integral (PI) controller and Fuzzy Logic Controller (FLC). The system performance is also verified experimentally.展开更多
<span style="font-family:Verdana;">This study presents an intelligent approach for load frequency control (LFC) of small hydropower plants (SHPs). The approach which is based on fuzzy logic (FL), takes...<span style="font-family:Verdana;">This study presents an intelligent approach for load frequency control (LFC) of small hydropower plants (SHPs). The approach which is based on fuzzy logic (FL), takes into account the non-linearity of SHPs—something which is not possible using traditional controllers. Most intelligent methods use two-</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">input fuzzy controllers, but because such controllers are expensive, there is </span><span style="font-family:Verdana;">economic interest in the relatively cheaper single-input controllers. A n</span><span style="font-family:Verdana;">on-</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">linear control model based on one-input fuzzy logic PI (FLPI) controller was developed and applied to control the non-linear SHP. Using MATLAB/Si</span><span style="font-family:Verdana;">- </span><span style="font-family:Verdana;">mulink SimScape, the SHP was simulated with linear and non-linear plant models. The performance of the FLPI controller was investigated and compared with that of the conventional PI/PID controller. Results show that the settling time for the FLPI controller is about 8 times shorter;while the overshoot is about 15 times smaller compared to the conventional PI/PID controller. Therefore, the FLPI controller performs better than the conventional PI/PID controller not only in meeting the LFC control objective but also in ensuring increased dynamic stability of SHPs.</span>展开更多
<span style="font-family:Verdana;">The target of this paper is to model a Maximum Power Point Tracker (MPPT) using a Fuzzy Logic Control (FLC) algorithm and to investigate its behavior with a battery l...<span style="font-family:Verdana;">The target of this paper is to model a Maximum Power Point Tracker (MPPT) using a Fuzzy Logic Control (FLC) algorithm and to investigate its behavior with a battery load. The advantage of this study over other studies in this field is that it considers a battery load rather than the commonly used</span><span></span><span></span><b><span><span></span><span></span> </span></b><span style="font-family:Verdana;">resistive load especially when we deal with the relationship between MPPT and system load. The system is about 60</span><span style="font-family:""> </span><span style="font-family:Verdana;">kW which </span><span style="font-family:Verdana;">is </span><span style="font-family:Verdana;">simulated under various environmental conditions by Matlab/Simulink program. For this type of non-linear application, FLC naturally offers a superior controller for </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">real load case. The artificial intelligence approach also benefits from this method for overcoming the complexity of nonlinear system modelling. The results show that FLC provides high performance for MPPT of PV system with battery load due to its low settling time and limited oscillation around the steady state value. These are</span><span style="font-family:""> </span><span style="font-family:Verdana;">assistant factors for increasing battery life.</span>展开更多
This work presents the implementation of fuzzy logic control(FLC) on a microbial electrolysis cell(MEC).Hydrogen has been touted as a potential alternative source of energy to the depleting fossil fuels. MEC is one of...This work presents the implementation of fuzzy logic control(FLC) on a microbial electrolysis cell(MEC).Hydrogen has been touted as a potential alternative source of energy to the depleting fossil fuels. MEC is one of the most extensively studied method of hydrogen production. The utilization of biowaste as its substrate by MEC promotes the waste to energy initiative. The hydrogen production within the MEC system, which involves microbial interaction contributes to the system's nonlinearity. Taking into account of the high complexity of MEC system, a precise process control system is required to ensure a wellcontrolled biohydrogen production flow rate and storage application inside a tank. Proportionalderivative-integral(PID) controller has been one of the pioneer control loop mechanism. However, it lacks the capability to adapt properly in the presence of disturbance. An advanced process control mechanism such as the FLC has proven to be a better solution to be implemented on a nonlinear system due to its similarity in human-natured thinking. The performance of the FLC has been evaluated based on its implementation on the MEC system through various control schemes progressively. Similar evaluations include the performance of Proportional-Integral(PI) and PID controller for comparison purposes. The tracking capability of FLC is also accessed against another advanced controller that is the model predictive controller(MPC). One of the key findings in this work is that the FLC resulted in a desirable hydrogen output via MEC over the PI and PID controller in terms of shorter settling time and lesser overshoot.展开更多
Today's automation industry is driven by the need for an increased productivity, higher flexibility, and higher individuality, and characterized by tailor-made and more complex control solutions. In the processing in...Today's automation industry is driven by the need for an increased productivity, higher flexibility, and higher individuality, and characterized by tailor-made and more complex control solutions. In the processing industry, logic controller design is often a manual, experience-based, and thus an error-prone procedure. Typically, the specifications are given by a set of informal requirements and a technical flowchart and both are used to be directly translated into the control code. This paper proposes a method in which the control program is constructed as a sequential function chart (SFC) by transforming the requirements via clearly defined intermediate formats. For the purpose of analysis, the resulting SFC can be translated algorithmically into timed automata. A rigorous verification can be used to determine whether all specifications are satisfied if a formal model of the plant is available which is then composed with the automata model of the logic controller (LC).展开更多
This paper mainly represents the realization of synchro controller based on the programmable logic devices FPGA by request of HF ground wave radar synchro controller under the instance of making the best of the virtue...This paper mainly represents the realization of synchro controller based on the programmable logic devices FPGA by request of HF ground wave radar synchro controller under the instance of making the best of the virtues of FPGA. This design introduces the data communication between PC and synchro controller by PC Bus, which can carry the synchronous signals parameters to RAM of synchro controller, then according to the theory that the result of comparing counter value with signals parameters is the needed wave, we produce all waves HF ground wave radar needs, moreover all waves are produced time-sharing in order to save resources.展开更多
Making full use of wind power is one of the main purposes of the wind turbine generator control. Conventional hill climbing search (HCS) method can realize the maximum power point tracking (MPPT). However, the ste...Making full use of wind power is one of the main purposes of the wind turbine generator control. Conventional hill climbing search (HCS) method can realize the maximum power point tracking (MPPT). However, the step size of HCS method is constant so that it cannot consider both steady-state response and dynamic response. A fuzzy logical control (FLC) algorithm is proposed to solve this problem in this paper, which can track the maximum power point (MPP) quickly and smoothly. To evaluate MPPT algorithms, four performance indices are also proposed in this paper. They are the energy captured by wind turbine, the maximum power-point tracking time when wind speed changes slowly, the fluctuation magnitude of real power during steady state, and the energy captured by wind turbine when wind speed changes fast. Three cases are designed and simulated in MATLAB/Simulink respectively. The comparison of the three MPPT strategies concludes that the proposed fuzzy logical control algorithm is more superior to the conventional HCS algorithms.展开更多
On the basis of analyzing the system constitution of vehicle semi-active suspension, a 4-DOF (degree of freedom) dynamic model is established. A tunable fuzzy logic controller is designed by using without quantificati...On the basis of analyzing the system constitution of vehicle semi-active suspension, a 4-DOF (degree of freedom) dynamic model is established. A tunable fuzzy logic controller is designed by using without quantification method and taking into account the uncertainty, nonlinearity and complexity of parameters for a vehicle suspension system. Simulation to test the performance of this controller is performed under random excitations and definite disturbances of a C grade road, and the effects of time delay and changes of system parameters on the vehicle suspension system are researched. The numerical simulation shows that the performance of the designed tunable fuzzy logic controller is effective, stable and reliable.展开更多
Cyberattacks targeting industrial control systems(ICS)are becoming more sophisticated and advanced than in the past.A programmable logic controller(PLC),a core component of ICS,controls and monitors sensors and actuat...Cyberattacks targeting industrial control systems(ICS)are becoming more sophisticated and advanced than in the past.A programmable logic controller(PLC),a core component of ICS,controls and monitors sensors and actuators in the field.However,PLC has memory attack threats such as program injection and manipulation,which has long been a major target for attackers,and it is important to detect these attacks for ICS security.To detect PLC memory attacks,a security system is required to acquire and monitor PLC memory directly.In addition,the performance impact of the security system on the PLC makes it difficult to apply to the ICS.To address these challenges,this paper proposes a system to detect PLC memory attacks by continuously acquiring and monitoring PLC memory.The proposed system detects PLC memory attacks by acquiring the program blocks and block information directly from the same layer as the PLC and then comparing them in bytes with previous data.Experiments with Siemens S7-300 and S7-400 PLC were conducted to evaluate the PLC memory detection performance and performance impact on PLC.The experimental results demonstrate that the proposed system detects all malicious organization block(OB)injection and data block(DB)manipulation,and the increment of PLC cycle time,the impact on PLC performance,was less than 1 ms.The proposed system detects PLC memory attacks with a simpler detection method than earlier studies.Furthermore,the proposed system can be applied to ICS with a small performance impact on PLC.展开更多
The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant...The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant model has been used to validate the ANFIS combined FOPID control scheme.In the pro-posed adaptive control structure,the intelligent ANFIS was designed such that it will dynamically adjust the fractional order factors(λandµ)of the FOPID(also known as PIλDµ)controller to achieve better control performance.When the plant experiences uncertainties like external load disturbances or sudden changes in the input parameters,the stability and robustness of the system can be achieved effec-tively with the proposed control scheme.Also,a modified structure of the FOPID controller has been used in the present system to enhance the dynamic perfor-mance of the controller.An extensive MATLAB software simulation study was made to verify the usefulness of the proposed control scheme.The study has been carried out under different operating conditions such as external disturbances and sudden changes in input parameters.The results obtained using the ANFIS-FOPID control scheme are also compared to the classical fractional order PIλDµand conventional PID control schemes to validate the advantages of the control-lers.The simulation results confirm the effectiveness of the ANFIS combined FOPID controller for the chosen plant model.Also,the proposed control scheme outperformed traditional control methods in various performance metrics such as rise time,settling time and error criteria.展开更多
In this paper, implantation of fuzzy logic controller for parallel hybrid electric vehicles (PHEV) is presented. In PHEV the required torque is generated by a combination of internal-combustion engine (ICE) and an...In this paper, implantation of fuzzy logic controller for parallel hybrid electric vehicles (PHEV) is presented. In PHEV the required torque is generated by a combination of internal-combustion engine (ICE) and an electric motor. The controller simulated using the SIMULINK/MATLAB package. The controller is designed based on the desired speed for driving and the state of speed error. In the other hand, performance of PHEV and ICE under different road cycle is given. The hardware setup is done for electric propulsion system; the system contains the induction motor, the three phase IGBT inverter with control circuit using microcontroller. The closed loop control system used a DC permanent generator whose output voltage is related to motor speed. Comparison between simulation and experimental results show accurate matching.展开更多
Most of the controllers of IM (induction motor) for industrial applications have been designed based on PI controller without consideration of CL (core loss) and SLL (stray load loss). To get the precise perform...Most of the controllers of IM (induction motor) for industrial applications have been designed based on PI controller without consideration of CL (core loss) and SLL (stray load loss). To get the precise performances of torque as well as rotor speed and flux, the above mentioned losses should be considered. Conventional PI controller has overshoot effect at the transient period of the speed response curve. On the other hand, fuzzy logic and ANN (artificial neural network) based controllers can minimize the overshoot effect at the transient period because they have the abilities to deal with the nonlinear systems. In this paper, a comparative analysis is done between PI, fuzzy logic and ANN based speed controllers to find the suitable control strategy for IM with consideration of CL and SLL. The simulation analysis is done by using Matlab/Simulink software. The simulation results show that the fuzzy logic based speed controller gives better responses than ANN and conventional PI based speed controllers in terms of rotor speed, electromagnetic torque and rotor flux of IM.展开更多
基金The Project of China Vocational Education Association(ZJS2022YB024)。
文摘This paper addresses the problems faced in programmable logic controller(PLC)teaching in vocational colleges and proposes countermeasures to overcome these challenges.The study emphasizes the need for a deeper understanding of fundamental concepts and the integration of practical application in PLC education.It suggests involving students in teacher-led projects to enhance their programming skills and problem-solving skills.Additionally,the paper highlights the importance of interactive learning and collaborative discussions to foster student engagement.Furthermore,it emphasizes the cultivation of innovation consciousness through participation in innovation competitions and projects.The implementation of these strategies has shown positive results in improving learning outcomes and preparing students for careers in automation and control.This research contributes to the development of effective teaching approaches in PLC education in vocational colleges.
基金Project supported by Faculty of Technology,Department of Electrical Engineering,University of Batna,Algeria
文摘This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance.
基金National Natural Science Foundation of China and Provincial Natural Science Foundafion of Guangdong, China.
文摘An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and control of the weld pool depth with ANN and theintelligent control for weld seam tracking with FLC. The proposed neural network can produce highlycomplex nonlinear multi-variable model of the GTAW process that offers the accurate prediction ofwelding penetration depth. A self-adjusting fuzzy controller used for seam tracking adjusts thecontrol parameters on-line automatically according to the tracking errors so that the torch positioncan be controlled accurately.
文摘Fuzzy logic controller adopting unevenly-distributed membership function was presented with the purpose of enhancing performance of the temperature control precision and robustness for the chamber cooling system.Histogram equalization and noise detection were performed to modify the evenly-distributed membership functions of error and error change rate into unevenly-distributed membership functions.Then,the experimental results with evenly and unevenly distributed membership functions were compared under the same outside environment conditions.The experimental results show that the steady-state error is reduced around 40% and the noise disturbance is rejected successfully even though noise range is 60% of the control precision range.The control precision is improved by reducing the steady-state error and the robustness is enhanced by rejecting noise disturbance through the fuzzy logic controller with unevenly-distributed membership function.Moreover,the system energy efficiency and lifetime of electronic expansion valve(EEV) installed in chamber cooling system are improved by adopting the unevenly-distributed membership function.
基金Meg-science Engineering Project of the Chinese Academy of Sciences
文摘The timing and master control logic (MCL) units are the most important function units of the diagnostic neutral beam (DNB) power supply control system. The units control the operation of nine power supply subsystems of the DNB system, and provide protection for the DNB system from faults such as beam source arc down. Based on the characteristics of the DNB power supply system, the timing and MCL units have been designed, fabricated and tested. Experiments prove that the timing unit is convenient, flexible and reliable, and the MCL is functional.
文摘Increase of elevator speed brings about amplified vibrations of high-speed elevator. In order to reduce the horizontal vibrations of high-speed elevator, a new type of hydraulic active guide roller system based on fuzzy logic controller is developed. First the working principle of the hydraulic guide system is introduced, then the dynamic model of the horizontal vibrations for elevator cage with active guide roller system and the mathematical model of the hydraulic system are given. A fuzzy logic controller for the hydraulic system is designed to control the hydraulic actuator. To improve the control performance, preview compensation for the controller is provided. Finally, simulation and experiments are executed to verify the hydraulic active guide roller system and the control strategy. Both the simulation and experimental results indicate that the hydraulic active guide roller system can reduce the horizontal vibrations of the elevator effectively and has better effects than the passive one, and the fuzzy logic controller with preview compensation can give superior control performance.
文摘In industrial process control, fluid level control is one of the most basic aspects. Many control methods such as on-off, linear and PID (Proportional Integral Derivative) were developed time by time and used for precise controlling of fluid level. Due to flaws of PID controller in non-linear type processes such as inertial lag, time delay and time varying etc., there is a need of alternative design methodology that can be applied in both linear and non-linear systems and it can be execute with fuzzy concept. By using fuzzy logic, designer can realize lower development cost, superior feature and better end product. In this paper, level of fluid in tank is control by using fuzzy logic concept. For this purpose, a simulation system of fuzzy logic controller for fluid level control is designed using simulation packages of MATLAB software such as Fuzzy Logic Toolbox and Simulink. The designed fuzzy logic controller first takes information about inflow and outflow of fluid in tank than maintain the level of fluid in tank by controlling its output valve. In this paper, a controller is designed on five rules using two-input and one-output parameters. At the end, simulation results of fuzzy logic based controller are compared with classical PID controller and it shows that fuzzy logic controller has better stability, fast response and small overshoot.
文摘This article investigates the power quality enhancement in power system using one of the most famous series converter based FACTS controller like IPFC (Interline Power Flow Controller) in Power Injection Model (PIM). The parameters of PIM are derived with help of the Newton-Raphson power flow algorithm. In general, a sample test power system without FACTs devices has generated more reactive power, decreased real power, more harmonics, small power factor and poor dynamic performance under line and load variations. In order to improve the real power, compensating the reactive power, proficient power factor and excellent load voltage regulation in the sample test power system, an IPFC is designed. The D-Q technique is utilized here to derive the reference current of the converter and its D.C link capacitor voltage is regulated. Also, the reference voltage of the inverter is arrived by park transformation technique and its load voltage is controlled. Here, a sample 230 KV test power system is taken for study. Further as the conventional PI controllers are designed at one nominal operating point they are not competent to respond satisfactorily in dynamic operating conditions. This can be circumvented by a Fuzzy and Neural network based IPFC and its detailed Simulink model is developed using MATLAB and the overall performance analysis is carried out under different operating state of affairs.
文摘The Unified Power Quality Conditioner (UPQC) plays an important role in the constrained delivery of electrical power from the source to an isolated pool of load or from a source to the grid. The proposed system can compensate voltage sag/swell, reactive power compensation and harmonics in the linear and nonlinear loads. In this work, the off line drained data from conventional fuzzy logic controller. A novel control system with a Combined Neural Network (CNN) is used instead of the traditionally four fuzzy logic controllers. The performance of combined neural network controller compared with Proportional Integral (PI) controller and Fuzzy Logic Controller (FLC). The system performance is also verified experimentally.
文摘<span style="font-family:Verdana;">This study presents an intelligent approach for load frequency control (LFC) of small hydropower plants (SHPs). The approach which is based on fuzzy logic (FL), takes into account the non-linearity of SHPs—something which is not possible using traditional controllers. Most intelligent methods use two-</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">input fuzzy controllers, but because such controllers are expensive, there is </span><span style="font-family:Verdana;">economic interest in the relatively cheaper single-input controllers. A n</span><span style="font-family:Verdana;">on-</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">linear control model based on one-input fuzzy logic PI (FLPI) controller was developed and applied to control the non-linear SHP. Using MATLAB/Si</span><span style="font-family:Verdana;">- </span><span style="font-family:Verdana;">mulink SimScape, the SHP was simulated with linear and non-linear plant models. The performance of the FLPI controller was investigated and compared with that of the conventional PI/PID controller. Results show that the settling time for the FLPI controller is about 8 times shorter;while the overshoot is about 15 times smaller compared to the conventional PI/PID controller. Therefore, the FLPI controller performs better than the conventional PI/PID controller not only in meeting the LFC control objective but also in ensuring increased dynamic stability of SHPs.</span>
文摘<span style="font-family:Verdana;">The target of this paper is to model a Maximum Power Point Tracker (MPPT) using a Fuzzy Logic Control (FLC) algorithm and to investigate its behavior with a battery load. The advantage of this study over other studies in this field is that it considers a battery load rather than the commonly used</span><span></span><span></span><b><span><span></span><span></span> </span></b><span style="font-family:Verdana;">resistive load especially when we deal with the relationship between MPPT and system load. The system is about 60</span><span style="font-family:""> </span><span style="font-family:Verdana;">kW which </span><span style="font-family:Verdana;">is </span><span style="font-family:Verdana;">simulated under various environmental conditions by Matlab/Simulink program. For this type of non-linear application, FLC naturally offers a superior controller for </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">real load case. The artificial intelligence approach also benefits from this method for overcoming the complexity of nonlinear system modelling. The results show that FLC provides high performance for MPPT of PV system with battery load due to its low settling time and limited oscillation around the steady state value. These are</span><span style="font-family:""> </span><span style="font-family:Verdana;">assistant factors for increasing battery life.</span>
基金supported by the UMRG RP006H-13ICT Project, University of Malaya, Malaysia。
文摘This work presents the implementation of fuzzy logic control(FLC) on a microbial electrolysis cell(MEC).Hydrogen has been touted as a potential alternative source of energy to the depleting fossil fuels. MEC is one of the most extensively studied method of hydrogen production. The utilization of biowaste as its substrate by MEC promotes the waste to energy initiative. The hydrogen production within the MEC system, which involves microbial interaction contributes to the system's nonlinearity. Taking into account of the high complexity of MEC system, a precise process control system is required to ensure a wellcontrolled biohydrogen production flow rate and storage application inside a tank. Proportionalderivative-integral(PID) controller has been one of the pioneer control loop mechanism. However, it lacks the capability to adapt properly in the presence of disturbance. An advanced process control mechanism such as the FLC has proven to be a better solution to be implemented on a nonlinear system due to its similarity in human-natured thinking. The performance of the FLC has been evaluated based on its implementation on the MEC system through various control schemes progressively. Similar evaluations include the performance of Proportional-Integral(PI) and PID controller for comparison purposes. The tracking capability of FLC is also accessed against another advanced controller that is the model predictive controller(MPC). One of the key findings in this work is that the FLC resulted in a desirable hydrogen output via MEC over the PI and PID controller in terms of shorter settling time and lesser overshoot.
基金the European Union through the Network of Excellence Hybrid Control (HYCON) under contract IST-511368.
文摘Today's automation industry is driven by the need for an increased productivity, higher flexibility, and higher individuality, and characterized by tailor-made and more complex control solutions. In the processing industry, logic controller design is often a manual, experience-based, and thus an error-prone procedure. Typically, the specifications are given by a set of informal requirements and a technical flowchart and both are used to be directly translated into the control code. This paper proposes a method in which the control program is constructed as a sequential function chart (SFC) by transforming the requirements via clearly defined intermediate formats. For the purpose of analysis, the resulting SFC can be translated algorithmically into timed automata. A rigorous verification can be used to determine whether all specifications are satisfied if a formal model of the plant is available which is then composed with the automata model of the logic controller (LC).
基金the National High Technology Development of China(863-818-01-02)
文摘This paper mainly represents the realization of synchro controller based on the programmable logic devices FPGA by request of HF ground wave radar synchro controller under the instance of making the best of the virtues of FPGA. This design introduces the data communication between PC and synchro controller by PC Bus, which can carry the synchronous signals parameters to RAM of synchro controller, then according to the theory that the result of comparing counter value with signals parameters is the needed wave, we produce all waves HF ground wave radar needs, moreover all waves are produced time-sharing in order to save resources.
基金supported by the National High Technology Research and Development Program of China under Grant No.2011AA05S113Major State Basic Research Development Program under Grant No.2012CB215106+1 种基金Science and Technology Plan Program in Zhejiang Province under Grant No.2009C34013National Science and Technology Supporting Plan Project under Grant No.2009BAG12A09
文摘Making full use of wind power is one of the main purposes of the wind turbine generator control. Conventional hill climbing search (HCS) method can realize the maximum power point tracking (MPPT). However, the step size of HCS method is constant so that it cannot consider both steady-state response and dynamic response. A fuzzy logical control (FLC) algorithm is proposed to solve this problem in this paper, which can track the maximum power point (MPP) quickly and smoothly. To evaluate MPPT algorithms, four performance indices are also proposed in this paper. They are the energy captured by wind turbine, the maximum power-point tracking time when wind speed changes slowly, the fluctuation magnitude of real power during steady state, and the energy captured by wind turbine when wind speed changes fast. Three cases are designed and simulated in MATLAB/Simulink respectively. The comparison of the three MPPT strategies concludes that the proposed fuzzy logical control algorithm is more superior to the conventional HCS algorithms.
基金Funded by the National Natural Science Foundation of China (NO.50135030)
文摘On the basis of analyzing the system constitution of vehicle semi-active suspension, a 4-DOF (degree of freedom) dynamic model is established. A tunable fuzzy logic controller is designed by using without quantification method and taking into account the uncertainty, nonlinearity and complexity of parameters for a vehicle suspension system. Simulation to test the performance of this controller is performed under random excitations and definite disturbances of a C grade road, and the effects of time delay and changes of system parameters on the vehicle suspension system are researched. The numerical simulation shows that the performance of the designed tunable fuzzy logic controller is effective, stable and reliable.
基金supported by the Korea WESTERN POWER(KOWEPO)(2022-Commissioned Research-11,Development of Cyberattack Detection Technology for New and Renewable Energy Control System Using AI(Artificial Intelligence),50%)the Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.2021-0-01806,Development of Security by Design and Security Management Technology in Smart Factory,40%)the Gachon University Research Fund of 2023(GCU-202110280001,10%).
文摘Cyberattacks targeting industrial control systems(ICS)are becoming more sophisticated and advanced than in the past.A programmable logic controller(PLC),a core component of ICS,controls and monitors sensors and actuators in the field.However,PLC has memory attack threats such as program injection and manipulation,which has long been a major target for attackers,and it is important to detect these attacks for ICS security.To detect PLC memory attacks,a security system is required to acquire and monitor PLC memory directly.In addition,the performance impact of the security system on the PLC makes it difficult to apply to the ICS.To address these challenges,this paper proposes a system to detect PLC memory attacks by continuously acquiring and monitoring PLC memory.The proposed system detects PLC memory attacks by acquiring the program blocks and block information directly from the same layer as the PLC and then comparing them in bytes with previous data.Experiments with Siemens S7-300 and S7-400 PLC were conducted to evaluate the PLC memory detection performance and performance impact on PLC.The experimental results demonstrate that the proposed system detects all malicious organization block(OB)injection and data block(DB)manipulation,and the increment of PLC cycle time,the impact on PLC performance,was less than 1 ms.The proposed system detects PLC memory attacks with a simpler detection method than earlier studies.Furthermore,the proposed system can be applied to ICS with a small performance impact on PLC.
基金The author extends their appreciation to the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project number(IFPSAU-2021/01/18128).
文摘The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant model has been used to validate the ANFIS combined FOPID control scheme.In the pro-posed adaptive control structure,the intelligent ANFIS was designed such that it will dynamically adjust the fractional order factors(λandµ)of the FOPID(also known as PIλDµ)controller to achieve better control performance.When the plant experiences uncertainties like external load disturbances or sudden changes in the input parameters,the stability and robustness of the system can be achieved effec-tively with the proposed control scheme.Also,a modified structure of the FOPID controller has been used in the present system to enhance the dynamic perfor-mance of the controller.An extensive MATLAB software simulation study was made to verify the usefulness of the proposed control scheme.The study has been carried out under different operating conditions such as external disturbances and sudden changes in input parameters.The results obtained using the ANFIS-FOPID control scheme are also compared to the classical fractional order PIλDµand conventional PID control schemes to validate the advantages of the control-lers.The simulation results confirm the effectiveness of the ANFIS combined FOPID controller for the chosen plant model.Also,the proposed control scheme outperformed traditional control methods in various performance metrics such as rise time,settling time and error criteria.
文摘In this paper, implantation of fuzzy logic controller for parallel hybrid electric vehicles (PHEV) is presented. In PHEV the required torque is generated by a combination of internal-combustion engine (ICE) and an electric motor. The controller simulated using the SIMULINK/MATLAB package. The controller is designed based on the desired speed for driving and the state of speed error. In the other hand, performance of PHEV and ICE under different road cycle is given. The hardware setup is done for electric propulsion system; the system contains the induction motor, the three phase IGBT inverter with control circuit using microcontroller. The closed loop control system used a DC permanent generator whose output voltage is related to motor speed. Comparison between simulation and experimental results show accurate matching.
文摘Most of the controllers of IM (induction motor) for industrial applications have been designed based on PI controller without consideration of CL (core loss) and SLL (stray load loss). To get the precise performances of torque as well as rotor speed and flux, the above mentioned losses should be considered. Conventional PI controller has overshoot effect at the transient period of the speed response curve. On the other hand, fuzzy logic and ANN (artificial neural network) based controllers can minimize the overshoot effect at the transient period because they have the abilities to deal with the nonlinear systems. In this paper, a comparative analysis is done between PI, fuzzy logic and ANN based speed controllers to find the suitable control strategy for IM with consideration of CL and SLL. The simulation analysis is done by using Matlab/Simulink software. The simulation results show that the fuzzy logic based speed controller gives better responses than ANN and conventional PI based speed controllers in terms of rotor speed, electromagnetic torque and rotor flux of IM.