To protect the environment,the discharged sewage’s quality must meet the state’s discharge standards.There are many water quality indicators,and the pH(Potential of Hydrogen)value is one of them.The natural water’s...To protect the environment,the discharged sewage’s quality must meet the state’s discharge standards.There are many water quality indicators,and the pH(Potential of Hydrogen)value is one of them.The natural water’s pH value is 6.0–8.5.The sewage treatment plant uses some data in the sewage treatment process to monitor and predict whether wastewater’s pH value will exceed the standard.This paper aims to study the deep learning prediction model of wastewater’s pH.Firstly,the research uses the random forest method to select the data features and then,based on the sliding window,convert the data set into a time series which is the input of the deep learning training model.Secondly,by analyzing and comparing relevant references,this paper believes that the CNN(Convolutional Neural Network)model is better at nonlinear data modeling and constructs a CNN model including the convolution and pooling layers.After alternating the combination of the convolutional layer and pooling layer,all features are integrated into a full-connected neural network.Thirdly,the number of input samples of the CNN model directly affects the prediction effect of the model.Therefore,this paper adopts the sliding window method to study the optimal size.Many experimental results show that the optimal prediction model can be obtained when alternating six convolutional layers and three pooling layers.The last full-connection layer contains two layers and 64 neurons per layer.The sliding window size selects as 12.Finally,the research has carried out data prediction based on the optimal CNN deep learning model.The predicted pH of the sewage is between 7.2 and 8.6 in this paper.The result is applied in the monitoring system platform of the“Intelligent operation and maintenance platform of the reclaimed water plant.”展开更多
In order to improve the adaptability of the quadruped robot in complex environments,a path planning method based on sliding window and variant A* algorithm for quadruped robot is presented. To improve the path plannin...In order to improve the adaptability of the quadruped robot in complex environments,a path planning method based on sliding window and variant A* algorithm for quadruped robot is presented. To improve the path planning efficiency and robot security,an incremental A* search algorithm( IA*) and the A* algorithm having obstacle grids extending( EA*) are proposed respectively. The IA* algorithm firstly searches an optimal path based on A* algorithm,then a new route from the current path to the new goal projection is added to generate a suboptimum route incrementally. In comparison with traditional method solving path planning problem from scratch,the IA* enables the robot to plan path more efficiently. EA* extends the obstacle by means of increasing grid g-value,which makes the route far away from the obstacle and avoids blocking the narrow passage. To navigate the robot running smoothly,a quadratic B-spline interpolation is applied to smooth the path.Simulation results illustrate that the IA* algorithm can increase the re-planning efficiency more than 5 times and demonstrate the effectiveness of the EA* algorithm.展开更多
This paper presents two one-pass algorithms for dynamically computing frequency counts in sliding window over a data stream-computing frequency counts exceeding user-specified threshold ε. The first algorithm constru...This paper presents two one-pass algorithms for dynamically computing frequency counts in sliding window over a data stream-computing frequency counts exceeding user-specified threshold ε. The first algorithm constructs subwindows and deletes expired sub-windows periodically in sliding window, and each sub-window maintains a summary data structure. The first algorithm outputs at most 1/ε + 1 elements for frequency queries over the most recent N elements. The second algorithm adapts multiple levels method to deal with data stream. Once the sketch of the most recent N elements has been constructed, the second algorithm can provides the answers to the frequency queries over the most recent n ( n≤N) elements. The second algorithm outputs at most 1/ε + 2 elements. The analytical and experimental results show that our algorithms are accurate and effective.展开更多
Continuous response of range query on steaming data provides useful information for many practical applications as well as the risk of privacy disclosure.The existing research on differential privacy streaming data pu...Continuous response of range query on steaming data provides useful information for many practical applications as well as the risk of privacy disclosure.The existing research on differential privacy streaming data publication mostly pay close attention to boosting query accuracy,but pay less attention to query efficiency,and ignore the effect of timeliness on data weight.In this paper,we propose an effective algorithm of differential privacy streaming data publication under exponential decay mode.Firstly,by introducing the Fenwick tree to divide and reorganize data items in the stream,we achieve a constant time complexity for inserting a new item and getting the prefix sum.Meanwhile,we achieve time complicity linear to the number of data item for building a tree.After that,we use the advantage of matrix mechanism to deal with relevant queries and reduce the global sensitivity.In addition,we choose proper diagonal matrix further improve the range query accuracy.Finally,considering about exponential decay,every data item is weighted by the decay factor.By putting the Fenwick tree and matrix optimization together,we present complete algorithm for differentiate private real-time streaming data publication.The experiment is designed to compare the algorithm in this paper with similar algorithms for streaming data release in exponential decay.Experimental results show that the algorithm in this paper effectively improve the query efficiency while ensuring the quality of the query.展开更多
This paper presents an efficient pattern matching algorithm (FSW). FSW improves the searching process for a pattern in a text. It scans the text with the help of four sliding windows. The windows are equal to the leng...This paper presents an efficient pattern matching algorithm (FSW). FSW improves the searching process for a pattern in a text. It scans the text with the help of four sliding windows. The windows are equal to the length of the pattern, allowing multiple alignments in the searching process. The text is divided into two parts;each part is scanned from both sides simultaneously using two sliding windows. The four windows slide in parallel in both parts of the text. The comparisons done between the text and the pattern are done from both of the pattern sides in parallel. The conducted experiments show that FSW achieves the best overall results in the number of attempts and the number of character comparisons compared to the pattern matching algorithms: Two Sliding Windows (TSW), Enhanced Two Sliding Windows algorithm (ETSW) and Berry-Ravindran algorithm (BR). The best time case is calculated and found to be??while the average case time complexity is??.展开更多
Principal component analysis(PCA)has been already employed for fault detection of air conditioning systems.The sliding window,which is composed of some parameters satisfying with thermal load balance,can select the ta...Principal component analysis(PCA)has been already employed for fault detection of air conditioning systems.The sliding window,which is composed of some parameters satisfying with thermal load balance,can select the target historical fault-free reference data as the template which is similar to the current snapshot data.The size of sliding window is usually given according to empirical values,while the influence of different sizes of sliding windows on fault detection of an air conditioning system is not further studied.The air conditioning system is a dynamic response process,and the operating parameters change with the change of the load,while the response of the controller is delayed.In a variable air volume(VAV)air conditioning system controlled by the total air volume method,in order to ensure sufficient response time,30 data points are selected first,and then their multiples are selected.Three different sizes of sliding windows with 30,60 and 90 data points are applied to compare the fault detection effect in this paper.The results show that if the size of the sliding window is 60 data points,the average fault-free detection ratio is 80.17%in fault-free testing days,and the average fault detection ratio is 88.47%in faulty testing days.展开更多
Join operation is a critical problem when dealing with sliding window over data streams. There have been many optimization strategies for sliding window join in the literature, but a simple heuristic is always used fo...Join operation is a critical problem when dealing with sliding window over data streams. There have been many optimization strategies for sliding window join in the literature, but a simple heuristic is always used for selecting the join sequence of many sliding windows, which is ineffectively. The graph-based approach is proposed to process the problem. The sliding window join model is introduced primarily. In this model vertex represent join operator and edge indicated the join relationship among sliding windows. Vertex weight and edge weight represent the cost of join and the reciprocity of join operators respectively. Then good query plan with minimal cost can be found in the model. Thus a complete join algorithm combining setting up model, finding optimal query plan and executing query plan is shown. Experiments show that the graph-based approach is feasible and can work better in above environment.展开更多
How to process aggregate queries over data streams efficiently and effectively have been becoming hot re search topics in both academic community and industrial community. Aiming at the issues, a novel Linked-tree alg...How to process aggregate queries over data streams efficiently and effectively have been becoming hot re search topics in both academic community and industrial community. Aiming at the issues, a novel Linked-tree algorithm based on sliding window is proposed in this paper. Due to the proposal of concept area, the Linked-tree algorithm reuses many primary results in last window and then avoids lots of unnecessary repeated comparison operations between two successive windows. As a result, execution efficiency of MAX query is improved dramatically. In addition, since the size of memory is relevant to the number of areas but irrelevant to the size of sliding window, memory is economized greatly. The extensive experimental results show that the performance of Linked-tree algorithm has significant improvement gains over the traditional SC (Simple Compared) algorithm and Ranked-tree algorithm.展开更多
Processing a join over unbounded input streams requires unbounded memory, since every tuple in one infinite stream must be compared with every tuple in the other. In fact, most join queries over unbounded input stream...Processing a join over unbounded input streams requires unbounded memory, since every tuple in one infinite stream must be compared with every tuple in the other. In fact, most join queries over unbounded input streams are restricted to finite memory due to sliding window constraints. So far, non-indexed and indexed stream equijoin algorithms based on sliding windows have been proposed in many literatures. However, none of them takes non-equijoin into consideration. In many eases, non-equijoin queries occur frequently. Hence, it is worth to discuss how to process non-equijoin queries effectively and efficiently. In this paper, we propose an indexed join algorithm for supporting non-equijoin queries. The experimental results show that our indexed non-equijoin techniques are more efficient than those without index.展开更多
Switch and router architectures employing a shared buffer are known to provide high throughput, low delay, and high memory utilization. Superior performance of a shared-memory switch compared to switches employing oth...Switch and router architectures employing a shared buffer are known to provide high throughput, low delay, and high memory utilization. Superior performance of a shared-memory switch compared to switches employing other buffer strategies can be achieved by carefully implementing a buffer-management scheme. A buffer-sharing policy should allow all of the output interfaces to have fair and robust access to buffer resources. The sliding-window (SW) packet switch is a novel architecture that uses an array of parallel memory modules that are logically shared by all input and output lines to store and process data packets. The innovative aspects of the SW architecture are the approach to accomplishing parallel operation and the simplicity of the control functions. The implementation of a buffer-management scheme in a SW packet switch is dependent on how the buffer space is organized into output queues. This paper presents an efficient SW buffer-management scheme that regulates the sharing of the buffer space. We compare the proposed scheme with previous work under bursty traffic conditions. Also, we explain how the proposed buffer-management scheme can provide quality-of-service (QoS) to different traffic classes.展开更多
Data archiving is one of the most critical issues for modern astronomical observations.With the development of a new generation of radio telescopes,the transfer and archiving of massive remote data have become urgent ...Data archiving is one of the most critical issues for modern astronomical observations.With the development of a new generation of radio telescopes,the transfer and archiving of massive remote data have become urgent problems to be solved.Herein,we present a practical and robust file-level flow-control approach,called the Unlimited Sliding-Window(USW),by referring to the classic flow-control method in the TCP protocol.Based on the USW and the Next Generation Archive System(NGAS)developed for the Murchison Widefield Array telescope,we further implemented an enhanced archive system(ENGAS)using ZeroMQ middleware.The ENGAS substantially improves the transfer performance and ensures the integrity of transferred files.In the tests,the ENGAS is approximately three to twelve times faster than the NGAS and can fully utilize the bandwidth of network links.Thus,for archiving radio observation data,the ENGAS reduces the communication time,improves the bandwidth utilization,and solves the remote synchronous archiving of data from observatories such as Mingantu spectral radioheliograph.It also provides a better reference for the future construction of the Square Kilometer Array(SKA)Science Regional Center.展开更多
基金This research was funded by the National Key R&D Program of China(No.2018YFB2100603)the Key R&D Program of Hubei Province(No.2022BAA048)+2 种基金the National Natural Science Foundation of China program(No.41890822)the Open Fund of National Engineering Research Centre for Geographic Information System,China University of Geosciences,Wuhan 430074,China(No.2022KFJJ07)The numerical calculations in this paper have been done on the supercomputing system in the Supercomputing Centre of Wuhan University.
文摘To protect the environment,the discharged sewage’s quality must meet the state’s discharge standards.There are many water quality indicators,and the pH(Potential of Hydrogen)value is one of them.The natural water’s pH value is 6.0–8.5.The sewage treatment plant uses some data in the sewage treatment process to monitor and predict whether wastewater’s pH value will exceed the standard.This paper aims to study the deep learning prediction model of wastewater’s pH.Firstly,the research uses the random forest method to select the data features and then,based on the sliding window,convert the data set into a time series which is the input of the deep learning training model.Secondly,by analyzing and comparing relevant references,this paper believes that the CNN(Convolutional Neural Network)model is better at nonlinear data modeling and constructs a CNN model including the convolution and pooling layers.After alternating the combination of the convolutional layer and pooling layer,all features are integrated into a full-connected neural network.Thirdly,the number of input samples of the CNN model directly affects the prediction effect of the model.Therefore,this paper adopts the sliding window method to study the optimal size.Many experimental results show that the optimal prediction model can be obtained when alternating six convolutional layers and three pooling layers.The last full-connection layer contains two layers and 64 neurons per layer.The sliding window size selects as 12.Finally,the research has carried out data prediction based on the optimal CNN deep learning model.The predicted pH of the sewage is between 7.2 and 8.6 in this paper.The result is applied in the monitoring system platform of the“Intelligent operation and maintenance platform of the reclaimed water plant.”
基金Supported by the National Natural Science Foundation of China(No.61233014,61305130,61503153)the National High Technology Research and Development Program of China(No.2015AA042201)+1 种基金the Shandong Provincial Natural Science Foundation(No.ZR2013FQ003,ZR2013EEM027)China Postdoctoral Science Foundation(No.2013M541912)
文摘In order to improve the adaptability of the quadruped robot in complex environments,a path planning method based on sliding window and variant A* algorithm for quadruped robot is presented. To improve the path planning efficiency and robot security,an incremental A* search algorithm( IA*) and the A* algorithm having obstacle grids extending( EA*) are proposed respectively. The IA* algorithm firstly searches an optimal path based on A* algorithm,then a new route from the current path to the new goal projection is added to generate a suboptimum route incrementally. In comparison with traditional method solving path planning problem from scratch,the IA* enables the robot to plan path more efficiently. EA* extends the obstacle by means of increasing grid g-value,which makes the route far away from the obstacle and avoids blocking the narrow passage. To navigate the robot running smoothly,a quadratic B-spline interpolation is applied to smooth the path.Simulation results illustrate that the IA* algorithm can increase the re-planning efficiency more than 5 times and demonstrate the effectiveness of the EA* algorithm.
基金Supported by the National Natural Science Foun-dation of China (60403027)
文摘This paper presents two one-pass algorithms for dynamically computing frequency counts in sliding window over a data stream-computing frequency counts exceeding user-specified threshold ε. The first algorithm constructs subwindows and deletes expired sub-windows periodically in sliding window, and each sub-window maintains a summary data structure. The first algorithm outputs at most 1/ε + 1 elements for frequency queries over the most recent N elements. The second algorithm adapts multiple levels method to deal with data stream. Once the sketch of the most recent N elements has been constructed, the second algorithm can provides the answers to the frequency queries over the most recent n ( n≤N) elements. The second algorithm outputs at most 1/ε + 2 elements. The analytical and experimental results show that our algorithms are accurate and effective.
基金This work is supported,in part,by the National Natural Science Foundation of China under grant numbers 61300026in part,by the Natural Science Foundation of Fujian Province under grant numbers 2017J01754, 2018J01797.
文摘Continuous response of range query on steaming data provides useful information for many practical applications as well as the risk of privacy disclosure.The existing research on differential privacy streaming data publication mostly pay close attention to boosting query accuracy,but pay less attention to query efficiency,and ignore the effect of timeliness on data weight.In this paper,we propose an effective algorithm of differential privacy streaming data publication under exponential decay mode.Firstly,by introducing the Fenwick tree to divide and reorganize data items in the stream,we achieve a constant time complexity for inserting a new item and getting the prefix sum.Meanwhile,we achieve time complicity linear to the number of data item for building a tree.After that,we use the advantage of matrix mechanism to deal with relevant queries and reduce the global sensitivity.In addition,we choose proper diagonal matrix further improve the range query accuracy.Finally,considering about exponential decay,every data item is weighted by the decay factor.By putting the Fenwick tree and matrix optimization together,we present complete algorithm for differentiate private real-time streaming data publication.The experiment is designed to compare the algorithm in this paper with similar algorithms for streaming data release in exponential decay.Experimental results show that the algorithm in this paper effectively improve the query efficiency while ensuring the quality of the query.
文摘This paper presents an efficient pattern matching algorithm (FSW). FSW improves the searching process for a pattern in a text. It scans the text with the help of four sliding windows. The windows are equal to the length of the pattern, allowing multiple alignments in the searching process. The text is divided into two parts;each part is scanned from both sides simultaneously using two sliding windows. The four windows slide in parallel in both parts of the text. The comparisons done between the text and the pattern are done from both of the pattern sides in parallel. The conducted experiments show that FSW achieves the best overall results in the number of attempts and the number of character comparisons compared to the pattern matching algorithms: Two Sliding Windows (TSW), Enhanced Two Sliding Windows algorithm (ETSW) and Berry-Ravindran algorithm (BR). The best time case is calculated and found to be??while the average case time complexity is??.
基金Fundamental Research Funds for the Central Universities of Ministry of Education of China。
文摘Principal component analysis(PCA)has been already employed for fault detection of air conditioning systems.The sliding window,which is composed of some parameters satisfying with thermal load balance,can select the target historical fault-free reference data as the template which is similar to the current snapshot data.The size of sliding window is usually given according to empirical values,while the influence of different sizes of sliding windows on fault detection of an air conditioning system is not further studied.The air conditioning system is a dynamic response process,and the operating parameters change with the change of the load,while the response of the controller is delayed.In a variable air volume(VAV)air conditioning system controlled by the total air volume method,in order to ensure sufficient response time,30 data points are selected first,and then their multiples are selected.Three different sizes of sliding windows with 30,60 and 90 data points are applied to compare the fault detection effect in this paper.The results show that if the size of the sliding window is 60 data points,the average fault-free detection ratio is 80.17%in fault-free testing days,and the average fault detection ratio is 88.47%in faulty testing days.
文摘Join operation is a critical problem when dealing with sliding window over data streams. There have been many optimization strategies for sliding window join in the literature, but a simple heuristic is always used for selecting the join sequence of many sliding windows, which is ineffectively. The graph-based approach is proposed to process the problem. The sliding window join model is introduced primarily. In this model vertex represent join operator and edge indicated the join relationship among sliding windows. Vertex weight and edge weight represent the cost of join and the reciprocity of join operators respectively. Then good query plan with minimal cost can be found in the model. Thus a complete join algorithm combining setting up model, finding optimal query plan and executing query plan is shown. Experiments show that the graph-based approach is feasible and can work better in above environment.
基金Supported by the National Natural Science Foun-dation of China (60573089) the National 985 Project Fundation(985-2-DB-Y01)
文摘How to process aggregate queries over data streams efficiently and effectively have been becoming hot re search topics in both academic community and industrial community. Aiming at the issues, a novel Linked-tree algorithm based on sliding window is proposed in this paper. Due to the proposal of concept area, the Linked-tree algorithm reuses many primary results in last window and then avoids lots of unnecessary repeated comparison operations between two successive windows. As a result, execution efficiency of MAX query is improved dramatically. In addition, since the size of memory is relevant to the number of areas but irrelevant to the size of sliding window, memory is economized greatly. The extensive experimental results show that the performance of Linked-tree algorithm has significant improvement gains over the traditional SC (Simple Compared) algorithm and Ranked-tree algorithm.
基金Supported by the National Natural Science Foun-dation of China (60473073)
文摘Processing a join over unbounded input streams requires unbounded memory, since every tuple in one infinite stream must be compared with every tuple in the other. In fact, most join queries over unbounded input streams are restricted to finite memory due to sliding window constraints. So far, non-indexed and indexed stream equijoin algorithms based on sliding windows have been proposed in many literatures. However, none of them takes non-equijoin into consideration. In many eases, non-equijoin queries occur frequently. Hence, it is worth to discuss how to process non-equijoin queries effectively and efficiently. In this paper, we propose an indexed join algorithm for supporting non-equijoin queries. The experimental results show that our indexed non-equijoin techniques are more efficient than those without index.
文摘Switch and router architectures employing a shared buffer are known to provide high throughput, low delay, and high memory utilization. Superior performance of a shared-memory switch compared to switches employing other buffer strategies can be achieved by carefully implementing a buffer-management scheme. A buffer-sharing policy should allow all of the output interfaces to have fair and robust access to buffer resources. The sliding-window (SW) packet switch is a novel architecture that uses an array of parallel memory modules that are logically shared by all input and output lines to store and process data packets. The innovative aspects of the SW architecture are the approach to accomplishing parallel operation and the simplicity of the control functions. The implementation of a buffer-management scheme in a SW packet switch is dependent on how the buffer space is organized into output queues. This paper presents an efficient SW buffer-management scheme that regulates the sharing of the buffer space. We compare the proposed scheme with previous work under bursty traffic conditions. Also, we explain how the proposed buffer-management scheme can provide quality-of-service (QoS) to different traffic classes.
基金supported by the National Key Research and Development Program of China(2020SKA0110300)the Joint Research Fund in Astronomy(U1831204 and U1931141)under cooperative agreement between the National Natural Science Foundation of China(NSFC)+7 种基金the Chinese Academy of Sciences(CAS)(NSFC,No.11903009)the Funds for International Cooperation and Exchange of the NSFC(11961141001)Yunnan Key Research and Development Program(2018IA054)The Key Science and Technology Program of Henan Province(Nos.202102210152,212102210611 and 202102210125)the Research and Cultivation Fund Project of Anyang Normal University(AYNUKPY-2019-24 and AYNUKPY-2020-25)supported by Astronomical Big Data Joint Research Centerco-founded by the National Astronomical ObservatoriesChinese Academy of Sciences and Alibaba Cloud。
文摘Data archiving is one of the most critical issues for modern astronomical observations.With the development of a new generation of radio telescopes,the transfer and archiving of massive remote data have become urgent problems to be solved.Herein,we present a practical and robust file-level flow-control approach,called the Unlimited Sliding-Window(USW),by referring to the classic flow-control method in the TCP protocol.Based on the USW and the Next Generation Archive System(NGAS)developed for the Murchison Widefield Array telescope,we further implemented an enhanced archive system(ENGAS)using ZeroMQ middleware.The ENGAS substantially improves the transfer performance and ensures the integrity of transferred files.In the tests,the ENGAS is approximately three to twelve times faster than the NGAS and can fully utilize the bandwidth of network links.Thus,for archiving radio observation data,the ENGAS reduces the communication time,improves the bandwidth utilization,and solves the remote synchronous archiving of data from observatories such as Mingantu spectral radioheliograph.It also provides a better reference for the future construction of the Square Kilometer Array(SKA)Science Regional Center.
文摘针对现有基于数据驱动的随机子空间(data-driven stochastic subspace identification,DATA-SSI)算法存在的不足,无法实现稳定图中真假模态的智能化筛选,提出了一种新的模态参数智能化识别算法。首先通过引入滑窗技术来实现对输入信号的合理划分,以避免虚假模态和模态遗漏现象的出现;其次通过引入OPTICS(ordering points to identify the clustering structure)密度聚类算法实现稳定图中真实模态的智能化筛选,最后将所提算法运用于某实际大型斜拉桥主梁结构的频率和模态振型识别过程中。结果表明,所提改进算法识别的频率值结果与理论值(MIDAS有限元结果)以及实际值(现场动力特性实测结果)间的误差均在5%以内,且识别的模态振型图与理论模态振型图具有很高的相似性。