The numerical approximations of the dynamical systems governed by semilinear parabolic equations are considered. An abstract framework for long time error estimates is established. When applied to reaction diffusion...The numerical approximations of the dynamical systems governed by semilinear parabolic equations are considered. An abstract framework for long time error estimates is established. When applied to reaction diffusion equation, Navier Stokes equations and Chan Hilliard equation, approximated by Galerkin and nonlinear Galerkin methods in space and by Runge Kutta method in time, our framework yields error estimates uniform in time.展开更多
文摘The numerical approximations of the dynamical systems governed by semilinear parabolic equations are considered. An abstract framework for long time error estimates is established. When applied to reaction diffusion equation, Navier Stokes equations and Chan Hilliard equation, approximated by Galerkin and nonlinear Galerkin methods in space and by Runge Kutta method in time, our framework yields error estimates uniform in time.