期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Binaural Speech Separation Algorithm Based on Long and Short Time Memory Networks 被引量:1
1
作者 Lin Zhou Siyuan Lu +3 位作者 Qiuyue Zhong Ying Chen Yibin Tang Yan Zhou 《Computers, Materials & Continua》 SCIE EI 2020年第6期1373-1386,共14页
Speaker separation in complex acoustic environment is one of challenging tasks in speech separation.In practice,speakers are very often unmoving or moving slowly in normal communication.In this case,the spatial featur... Speaker separation in complex acoustic environment is one of challenging tasks in speech separation.In practice,speakers are very often unmoving or moving slowly in normal communication.In this case,the spatial features among the consecutive speech frames become highly correlated such that it is helpful for speaker separation by providing additional spatial information.To fully exploit this information,we design a separation system on Recurrent Neural Network(RNN)with long short-term memory(LSTM)which effectively learns the temporal dynamics of spatial features.In detail,a LSTM-based speaker separation algorithm is proposed to extract the spatial features in each time-frequency(TF)unit and form the corresponding feature vector.Then,we treat speaker separation as a supervised learning problem,where a modified ideal ratio mask(IRM)is defined as the training function during LSTM learning.Simulations show that the proposed system achieves attractive separation performance in noisy and reverberant environments.Specifically,during the untrained acoustic test with limited priors,e.g.,unmatched signal to noise ratio(SNR)and reverberation,the proposed LSTM based algorithm can still outperforms the existing DNN based method in the measures of PESQ and STOI.It indicates our method is more robust in untrained conditions. 展开更多
关键词 Binaural speech separation long and short time memory networks feature vectors ideal ratio mask
下载PDF
Deep Learning Network for Energy Storage Scheduling in Power Market Environment Short-Term Load Forecasting Model
2
作者 Yunlei Zhang RuifengCao +3 位作者 Danhuang Dong Sha Peng RuoyunDu Xiaomin Xu 《Energy Engineering》 EI 2022年第5期1829-1841,共13页
In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits... In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits of energy storage in the process of participating in the power market,this paper takes energy storage scheduling as merely one factor affecting short-term power load,which affects short-term load time series along with time-of-use price,holidays,and temperature.A deep learning network is used to predict the short-term load,a convolutional neural network(CNN)is used to extract the features,and a long short-term memory(LSTM)network is used to learn the temporal characteristics of the load value,which can effectively improve prediction accuracy.Taking the load data of a certain region as an example,the CNN-LSTM prediction model is compared with the single LSTM prediction model.The experimental results show that the CNN-LSTM deep learning network with the participation of energy storage in dispatching can have high prediction accuracy for short-term power load forecasting. 展开更多
关键词 Energy storage scheduling short-term load forecasting deep learning network convolutional neural network CNN long and short term memory network LTSM
下载PDF
Fusion of Spiral Convolution-LSTM for Intrusion Detection Modeling
3
作者 Fei Wang Zhen Dong 《Computers, Materials & Continua》 SCIE EI 2024年第5期2315-2329,共15页
Aiming at the problems of low accuracy and slow convergence speed of current intrusion detection models,SpiralConvolution is combined with Long Short-Term Memory Network to construct a new intrusion detection model.Th... Aiming at the problems of low accuracy and slow convergence speed of current intrusion detection models,SpiralConvolution is combined with Long Short-Term Memory Network to construct a new intrusion detection model.The dataset is first preprocessed using solo thermal encoding and normalization functions.Then the spiral convolution-Long Short-Term Memory Network model is constructed,which consists of spiral convolution,a two-layer long short-term memory network,and a classifier.It is shown through experiments that the model is characterized by high accuracy,small model computation,and fast convergence speed relative to previous deep learning models.The model uses a new neural network to achieve fast and accurate network traffic intrusion detection.The model in this paper achieves 0.9706 and 0.8432 accuracy rates on the NSL-KDD dataset and the UNSWNB-15 dataset under five classifications and ten classes,respectively. 展开更多
关键词 Intrusion detection deep learning spiral convolution long and short term memory networks 1D-spiral convolution
下载PDF
A Regularized LSTM Method for Predicting Remaining Useful Life of Rolling Bearings 被引量:6
4
作者 Zhao-Hua Liu Xu-Dong Meng +4 位作者 Hua-Liang Wei Liang Chen Bi-Liang Lu Zhen-Heng Wang Lei Chen 《International Journal of Automation and computing》 EI CSCD 2021年第4期581-593,共13页
Rotating machinery is important to industrial production. Any failure of rotating machinery, especially the failure of rolling bearings, can lead to equipment shutdown and even more serious incidents. Therefore, accur... Rotating machinery is important to industrial production. Any failure of rotating machinery, especially the failure of rolling bearings, can lead to equipment shutdown and even more serious incidents. Therefore, accurate residual life prediction plays a crucial role in guaranteeing machine operation safety and reliability and reducing maintenance cost. In order to increase the forecasting precision of the remaining useful life(RUL) of the rolling bearing, an advanced approach combining elastic net with long short-time memory network(LSTM) is proposed, and the new approach is referred to as E-LSTM. The E-LSTM algorithm consists of an elastic mesh and LSTM, taking temporal-spatial correlation into consideration to forecast the RUL through the LSTM. To solve the over-fitting problem of the LSTM neural network during the training process, the elastic net based regularization term is introduced to the LSTM structure.In this way, the change of the output can be well characterized to express the bearing degradation mode. Experimental results from the real-world data demonstrate that the proposed E-LSTM method can obtain higher stability and relevant values that are useful for the RUL forecasting of bearing. Furthermore, these results also indicate that E-LSTM can achieve better performance. 展开更多
关键词 Deep learning fault diagnosis fault prognosis long and short time memory network(LSTM) rolling bearing rotating machinery REGULARIZATION remaining useful life prediction(RUL) recurrent neural network(RNN)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部