期刊文献+
共找到5,113篇文章
< 1 2 250 >
每页显示 20 50 100
Tool Health Condition Recognition Method for High Speed Milling of Titanium Alloy Based on Principal Component Analysis (PCA) and Long Short Term Memory (LSTM) 被引量:2
1
作者 YANG Qirui XU Kaizhou +2 位作者 ZHENG Xiaohu XIAO Lei BAO Jinsong 《Journal of Donghua University(English Edition)》 EI CAS 2019年第4期364-368,共5页
The healthy condition of the milling tool has a very high impact on the machining quality of the titanium components.Therefore,it is important to recognize the healthy condition of the tool and replace the damaged cut... The healthy condition of the milling tool has a very high impact on the machining quality of the titanium components.Therefore,it is important to recognize the healthy condition of the tool and replace the damaged cutter at the right time.In order to recognize the health condition of the milling cutter,a method based on the long short term memory(LSTM)was proposed to recognize tool health state in this paper.The various signals collected in the tool wear experiments were analyzed by time-domain statistics,and then the extracted data were generated by principal component analysis(PCA)method.The preprocessed data extracted by PCA is transmitted to the LSTM model for recognition.Compared with back propagation neural network(BPNN)and support vector machine(SVM),the proposed method can effectively utilize the time-domain regulation in the data to achieve higher recognition speed and accuracy. 展开更多
关键词 HEALTH CONDITION recognition MILLING TOOL principal component analysis(PCA) long short term memory(LSTM)
下载PDF
Conditional Random Field Tracking Model Based on a Visual Long Short Term Memory Network 被引量:3
2
作者 Pei-Xin Liu Zhao-Sheng Zhu +1 位作者 Xiao-Feng Ye Xiao-Feng Li 《Journal of Electronic Science and Technology》 CAS CSCD 2020年第4期308-319,共12页
In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is es... In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is established by using a visual long short term memory network in the three-dimensional(3D)space and the motion estimations jointly performed on object trajectory segments.Object visual field information is added to the long short term memory network to improve the accuracy of the motion related object pair selection and motion estimation.To address the uncertainty of the length and interval of trajectory segments,a multimode long short term memory network is proposed for the object motion estimation.The tracking performance is evaluated using the PETS2009 dataset.The experimental results show that the proposed method achieves better performance than the tracking methods based on the independent motion estimation. 展开更多
关键词 Conditional random field(CRF) long short term memory network(LSTM) motion estimation multiple object tracking(MOT)
下载PDF
Short-Term Relay Quality Prediction Algorithm Based on Long and Short-Term Memory 被引量:3
3
作者 XUE Wendong CHAI Yuan +2 位作者 LI Qigan HONG Yongqiang ZHENG Gaofeng 《Instrumentation》 2018年第4期46-54,共9页
The fraction defective of semi-finished products is predicted to optimize the process of relay production lines, by which production quality and productivity are increased, and the costs are decreased. The process par... The fraction defective of semi-finished products is predicted to optimize the process of relay production lines, by which production quality and productivity are increased, and the costs are decreased. The process parameters of relay production lines are studied based on the long-and-short-term memory network. Then, the Keras deep learning framework is utilized to build up a short-term relay quality prediction algorithm for the semi-finished product. A simulation model is used to study prediction algorithm. The simulation results show that the average prediction absolute error of the fraction is less than 5%. This work displays great application potential in the relay production lines. 展开更多
关键词 RELAY Production LINE long and short-term memory Network Keras DEEP Learning Framework Quality Prediction
下载PDF
Predicting and Curing Depression Using Long Short Term Memory and Global Vector
4
作者 Ayan Kumar Abdul Quadir Md +1 位作者 J.Christy Jackson Celestine Iwendi 《Computers, Materials & Continua》 SCIE EI 2023年第3期5837-5852,共16页
In today’s world, there are many people suffering from mentalhealth problems such as depression and anxiety. If these conditions are notidentified and treated early, they can get worse quickly and have far-reachingne... In today’s world, there are many people suffering from mentalhealth problems such as depression and anxiety. If these conditions are notidentified and treated early, they can get worse quickly and have far-reachingnegative effects. Unfortunately, many people suffering from these conditions,especially depression and hypertension, are unaware of their existence until theconditions become chronic. Thus, this paper proposes a novel approach usingBi-directional Long Short-Term Memory (Bi-LSTM) algorithm and GlobalVector (GloVe) algorithm for the prediction and treatment of these conditions.Smartwatches and fitness bands can be equipped with these algorithms whichcan share data with a variety of IoT devices and smart systems to betterunderstand and analyze the user’s condition. We compared the accuracy andloss of the training dataset and the validation dataset of the two modelsnamely, Bi-LSTM without a global vector layer and with a global vector layer.It was observed that the model of Bi-LSTM without a global vector layer hadan accuracy of 83%,while Bi-LSTMwith a global vector layer had an accuracyof 86% with a precision of 86.4%, and an F1 score of 0.861. In addition toproviding basic therapies for the treatment of identified cases, our model alsohelps prevent the deterioration of associated conditions, making our methoda real-world solution. 展开更多
关键词 Emotion dynamics DEPRESSION heart rate internet of things global vector long short term memory machine learning sentiment analysis
下载PDF
Analyses of fear memory in Arc/Arg3.1-deficient mice: intact short-term memory and impaired long-term and remote memory
5
作者 Kazuyuki Yamada Chihiro Homma +3 位作者 Kentaro Tanemura Toshio Ikeda Shigeyoshi Itohara Yoshiko Nagaoka 《World Journal of Neuroscience》 2011年第1期1-8,共8页
Activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) was originally identified in patients with seizures. It is densely distributed in the hip-pocampus and amygdala in particular. Because the expression of ... Activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) was originally identified in patients with seizures. It is densely distributed in the hip-pocampus and amygdala in particular. Because the expression of Arc/Arg3.1 is regulated by nerve in-puts, it is thought to be an immediate early gene. As shown both in vitro and in vivo, Arc/Arg3.1 is in-volved in synaptic consolidation and regulates some forms of learning and memory in rats and mice [1,2]. Furthermore, a recent study suggests that Arc/Arg3.1 may play a significant role in signal transmission via AMPA-type glutamate receptors [3-5]. Therefore, we conducted a detailed analysis of fear memory in Arc/Arg3.1-deficient mice. As previously reported, the knockout animals exhib-ited impaired fear memory in both contextual and cued test situations. Although Arc/Arg3.1-deficient mice showed almost the same performance as wild-type littermates 4 hr after a conditioning trial, their performance was impaired in the retention test after 24 hr or longer, either with or without reconsolidation. Immunohistochemical analyses showed an abnormal density of GluR1 in the hip-pocampus of Arc/Arg3.1-deficient mice;however, an application of AMPA potentiator did not improve memory performance in the mutant mice. Memory impairment in Arc/Arg3.1-deficient mice is so ro-bust that the mice provide a useful tool for devel-oping treatments for memory impairment. 展开更多
关键词 Activity-Regulated Cytoskeleton-Associated Protein (Arc/Arg3.1) KNOCKOUT (Ko) Mouse short- term memory long-term memory RECONSOLIDATION AMPA Receptor
下载PDF
State of Health Estimation of Lithium-Ion Batteries Using Support Vector Regression and Long Short-Term Memory
6
作者 Inioluwa Obisakin Chikodinaka Vanessa Ekeanyanwu 《Open Journal of Applied Sciences》 CAS 2022年第8期1366-1382,共17页
Lithium-ion batteries are the most widely accepted type of battery in the electric vehicle industry because of some of their positive inherent characteristics. However, the safety problems associated with inaccurate e... Lithium-ion batteries are the most widely accepted type of battery in the electric vehicle industry because of some of their positive inherent characteristics. However, the safety problems associated with inaccurate estimation and prediction of the state of health of these batteries have attracted wide attention due to the adverse negative effect on vehicle safety. In this paper, both machine and deep learning models were used to estimate the state of health of lithium-ion batteries. The paper introduces the definition of battery health status and its importance in the electric vehicle industry. Based on the data preprocessing and visualization analysis, three features related to actual battery capacity degradation are extracted from the data. Two learning models, SVR and LSTM were employed for the state of health estimation and their respective results are compared in this paper. The mean square error and coefficient of determination were the two metrics for the performance evaluation of the models. The experimental results indicate that both models have high estimation results. However, the metrics indicated that the SVR was the overall best model. 展开更多
关键词 Support Vector Regression (SVR) long short-term memory (LSTM) Network State of Health (SOH) Estimation
下载PDF
一种基于long short-term memory的唇语识别方法 被引量:3
7
作者 马宁 田国栋 周曦 《中国科学院大学学报(中英文)》 CSCD 北大核心 2018年第1期109-117,共9页
唇动视觉信息是说话内容的重要载体。受嘴唇外观、背景信息和说话习惯等影响,即使说话者说相同的内容,唇动视觉信息也会相差很大。为解决唇语视觉信息多样性的问题,提出一种基于long short-term memory(LSTM)的新的唇语识别方法。以往... 唇动视觉信息是说话内容的重要载体。受嘴唇外观、背景信息和说话习惯等影响,即使说话者说相同的内容,唇动视觉信息也会相差很大。为解决唇语视觉信息多样性的问题,提出一种基于long short-term memory(LSTM)的新的唇语识别方法。以往大多数的方法从嘴唇外表信息入手。本方法用嘴唇关键点坐标描述嘴唇形变信息作为唇语视频的特征,它具有类内一致性和类间区分性的特点。然后利用LSTM对特征进行时序编码,它能学习具有区分性和泛化性的空间-时序特征。在公开的唇语数据集GRID、MIRACL-VC和Oulu VS上对本方法做了针对分割的单词或短语的说话者独立的唇语识别评估。在GRID和MIRACL-VC上,本方法的准确率比传统方法至少高30%;在Oulu VS上,本方法的准确率接近于最优结果。以上实验结果表明,本文提出的基于LSTM的唇语识别方法有效地解决了唇语视觉信息多样性的问题。 展开更多
关键词 唇语识别 long short-term memory 计算机视觉
下载PDF
Long Short-Term Memory Recurrent Neural Network-Based Acoustic Model Using Connectionist Temporal Classification on a Large-Scale Training Corpus 被引量:9
8
作者 Donghyun Lee Minkyu Lim +4 位作者 Hosung Park Yoseb Kang Jeong-Sik Park Gil-Jin Jang Ji-Hwan Kim 《China Communications》 SCIE CSCD 2017年第9期23-31,共9页
A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a force... A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method. 展开更多
关键词 acoustic model connectionisttemporal classification LARGE-SCALE trainingcorpus long short-term memory recurrentneural network
下载PDF
Comparative study on the performance of ConvLSTM and ConvGRU in classification problems-taking early warning of short-duration heavy rainfall as an example
9
作者 Meng Zhou Jingya Wu +1 位作者 Mingxuan Chen Lei Han 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第4期52-57,共6页
卷积长短期记忆单元ConvLSTM和卷积门控循环单元ConvGRU是两种广泛应用的深度学习单元,通过将循环机制与卷积运算相结合,常常用于时空序列的预测.为了明确上述两种模型的收敛速度和分类能力,需要使用相同的模型架构对相同的分类问题进... 卷积长短期记忆单元ConvLSTM和卷积门控循环单元ConvGRU是两种广泛应用的深度学习单元,通过将循环机制与卷积运算相结合,常常用于时空序列的预测.为了明确上述两种模型的收敛速度和分类能力,需要使用相同的模型架构对相同的分类问题进行预测.本研究将北京短时强降水区级预警问题看作深度学习中的二分类问题,使用京津冀雷达网的组合反射率数据和北京区域内的自动气象站降雨数据进行深度学习模型的训练和评估.结果表明,ConvGRU的收敛速度比ConvLSTM快约25%.ConvLSTM和ConvGRU的预警性能随地区,时间,降雨强度的变化趋势相似,但大部分ConvLSTM的得分较高,少数情况下ConvGRU的得分较高. 展开更多
关键词 深度学习 卷积长短期记忆单元 卷积门控循环单元 分类问题
下载PDF
Short-time prediction for traffic flow based on wavelet de-noising and LSTM model 被引量:3
10
作者 WANG Qingrong LI Tongwei ZHU Changfeng 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第2期195-207,共13页
Aiming at the problem that some existing traffic flow prediction models are only for a single road segment and the model input data are not pre-processed,a heuristic threshold algorithm is used to de-noise the origina... Aiming at the problem that some existing traffic flow prediction models are only for a single road segment and the model input data are not pre-processed,a heuristic threshold algorithm is used to de-noise the original traffic flow data after wavelet decomposition.The correlation coefficients of road traffic flow data are calculated and the data compression matrix of road traffic flow is constructed.Data de-noising minimizes the interference of data to the model,while the correlation analysis of road network data realizes the prediction at the road network level.Utilizing the advantages of long short term memory(LSTM)network in time series data processing,the compression matrix is input into the constructed LSTM model for short-term traffic flow prediction.The LSTM-1 and LSTM-2 models were respectively trained by de-noising processed data and original data.Through simulation experiments,different prediction times were set,and the prediction results of the prediction model proposed in this paper were compared with those of other methods.It is found that the accuracy of the LSTM-2 model proposed in this paper increases by 10.278%on average compared with other prediction methods,and the prediction accuracy reaches 95.58%,which proves that the short-term traffic flow prediction method proposed in this paper is efficient. 展开更多
关键词 short-term traffic flow prediction deep learning wavelet denoising network matrix compression long short term memory(LSTM)network
下载PDF
Short Term Traffic Flow Prediction Using Hybrid Deep Learning
11
作者 Mohandu Anjaneyulu Mohan Kubendiran 《Computers, Materials & Continua》 SCIE EI 2023年第4期1641-1656,共16页
Traffic flow prediction in urban areas is essential in the IntelligentTransportation System (ITS). Short Term Traffic Flow (STTF) predictionimpacts traffic flow series, where an estimation of the number of vehicleswil... Traffic flow prediction in urban areas is essential in the IntelligentTransportation System (ITS). Short Term Traffic Flow (STTF) predictionimpacts traffic flow series, where an estimation of the number of vehicleswill appear during the next instance of time per hour. Precise STTF iscritical in Intelligent Transportation System. Various extinct systems aim forshort-term traffic forecasts, ensuring a good precision outcome which was asignificant task over the past few years. The main objective of this paper is topropose a new model to predict STTF for every hour of a day. In this paper,we have proposed a novel hybrid algorithm utilizing Principal ComponentAnalysis (PCA), Stacked Auto-Encoder (SAE), Long Short Term Memory(LSTM), and K-Nearest Neighbors (KNN) named PALKNN. Firstly, PCAremoves unwanted information from the dataset and selects essential features.Secondly, SAE is used to reduce the dimension of input data using onehotencoding so the model can be trained with better speed. Thirdly, LSTMtakes the input from SAE, where the data is sorted in ascending orderbased on the important features and generates the derived value. Finally,KNN Regressor takes information from LSTM to predict traffic flow. Theforecasting performance of the PALKNN model is investigated with OpenRoad Traffic Statistics dataset, Great Britain, UK. This paper enhanced thetraffic flow prediction for every hour of a day with a minimal error value.An extensive experimental analysis was performed on the benchmark dataset.The evaluated results indicate the significant improvement of the proposedPALKNN model over the recent approaches such as KNN, SARIMA, LogisticRegression, RNN, and LSTM in terms of root mean square error (RMSE)of 2.07%, mean square error (MSE) of 4.1%, and mean absolute error (MAE)of 2.04%. 展开更多
关键词 short term traffic flow prediction principal component analysis stacked auto encoders long short term memory k nearest neighbors:intelligent transportation system
下载PDF
Short-TermWind Power Prediction Based on Combinatorial Neural Networks
12
作者 Tusongjiang Kari Sun Guoliang +2 位作者 Lei Kesong Ma Xiaojing Wu Xian 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期1437-1452,共16页
Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation.Accurate wind power prediction can mitigate the adverse effects of wind power volatility on w... Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation.Accurate wind power prediction can mitigate the adverse effects of wind power volatility on wind power grid connections.For the characteristics of wind power antecedent data and precedent data jointly to determine the prediction accuracy of the prediction model,the short-term prediction of wind power based on a combined neural network is proposed.First,the Bi-directional Long Short Term Memory(BiLSTM)network prediction model is constructed,and the bi-directional nature of the BiLSTM network is used to deeply mine the wind power data information and find the correlation information within the data.Secondly,to avoid the limitation of a single prediction model when the wind power changes abruptly,the Wavelet Transform-Improved Adaptive Genetic Algorithm-Back Propagation(WT-IAGA-BP)neural network based on the combination of the WT-IAGA-BP neural network and BiLSTM network is constructed for the short-term prediction of wind power.Finally,comparing with LSTM,BiLSTM,WT-LSTM,WT-BiLSTM,WT-IAGA-BP,and WT-IAGA-BP&LSTM prediction models,it is verified that the wind power short-term prediction model based on the combination of WT-IAGA-BP neural network and BiLSTM network has higher prediction accuracy. 展开更多
关键词 Wind power prediction wavelet transform back propagation neural network bi-directional long short term memory
下载PDF
Deep Learning Network for Energy Storage Scheduling in Power Market Environment Short-Term Load Forecasting Model
13
作者 Yunlei Zhang RuifengCao +3 位作者 Danhuang Dong Sha Peng RuoyunDu Xiaomin Xu 《Energy Engineering》 EI 2022年第5期1829-1841,共13页
In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits... In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits of energy storage in the process of participating in the power market,this paper takes energy storage scheduling as merely one factor affecting short-term power load,which affects short-term load time series along with time-of-use price,holidays,and temperature.A deep learning network is used to predict the short-term load,a convolutional neural network(CNN)is used to extract the features,and a long short-term memory(LSTM)network is used to learn the temporal characteristics of the load value,which can effectively improve prediction accuracy.Taking the load data of a certain region as an example,the CNN-LSTM prediction model is compared with the single LSTM prediction model.The experimental results show that the CNN-LSTM deep learning network with the participation of energy storage in dispatching can have high prediction accuracy for short-term power load forecasting. 展开更多
关键词 Energy storage scheduling short-term load forecasting deep learning network convolutional neural network CNN long and short term memory network LTSM
下载PDF
A phenomenological memristor model for synaptic memory and learning behaviors
14
作者 邵楠 张盛兵 邵舒渊 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第11期526-536,共11页
Properties that are similar to the memory and learning functions in biological systems have been observed and reported in the experimental studies of memristors fabricated by different materials. These properties incl... Properties that are similar to the memory and learning functions in biological systems have been observed and reported in the experimental studies of memristors fabricated by different materials. These properties include the forgetting effect, the transition from short-term memory(STM) to long-term memory(LTM), learning-experience behavior, etc. The mathematical model of this kind of memristor would be very important for its theoretical analysis and application design.In our analysis of the existing memristor model with these properties, we find that some behaviors of the model are inconsistent with the reported experimental observations. A phenomenological memristor model is proposed for this kind of memristor. The model design is based on the forgetting effect and STM-to-LTM transition since these behaviors are two typical properties of these memristors. Further analyses of this model show that this model can also be used directly or modified to describe other experimentally observed behaviors. Simulations show that the proposed model can give a better description of the reported memory and learning behaviors of this kind of memristor than the existing model. 展开更多
关键词 memristor model forgetting effect transition from short-term memory(STM) to long-term memory(LTM) learning-experience behavior
下载PDF
A Combined Method of Temporal Convolutional Mechanism and Wavelet Decomposition for State Estimation of Photovoltaic Power Plants
15
作者 Shaoxiong Wu Ruoxin Li +6 位作者 Xiaofeng Tao Hailong Wu Ping Miao Yang Lu Yanyan Lu Qi Liu Li Pan 《Computers, Materials & Continua》 SCIE EI 2024年第11期3063-3077,共15页
Time series prediction has always been an important problem in the field of machine learning.Among them,power load forecasting plays a crucial role in identifying the behavior of photovoltaic power plants and regulati... Time series prediction has always been an important problem in the field of machine learning.Among them,power load forecasting plays a crucial role in identifying the behavior of photovoltaic power plants and regulating their control strategies.Traditional power load forecasting often has poor feature extraction performance for long time series.In this paper,a new deep learning framework Residual Stacked Temporal Long Short-Term Memory(RST-LSTM)is proposed,which combines wavelet decomposition and time convolutional memory network to solve the problem of feature extraction for long sequences.The network framework of RST-LSTM consists of two parts:one is a stacked time convolutional memory unit module for global and local feature extraction,and the other is a residual combination optimization module to reduce model redundancy.Finally,this paper demonstrates through various experimental indicators that RST-LSTM achieves significant performance improvements in both overall and local prediction accuracy compared to some state-of-the-art baseline methods. 展开更多
关键词 Times series forecasting long short term memory network(LSTM) time convolutional network(TCN) wavelet decomposition
下载PDF
深度学习在钢结构货架变形预测中的应用研究
16
作者 魏来 张雅晨 +1 位作者 潘健 胡一清 《山西建筑》 2025年第2期28-32,43,共6页
随着工业化和物流行业的发展,钢结构货架在仓储和物流系统中越来越重要,因此准确预测其变形至关重要。文章介绍了一种基于双向长短时记忆网络(BiLSTM)和注意力机制的预测算法,该算法利用时间序列数据,通过深度学习模型进行训练,能够更... 随着工业化和物流行业的发展,钢结构货架在仓储和物流系统中越来越重要,因此准确预测其变形至关重要。文章介绍了一种基于双向长短时记忆网络(BiLSTM)和注意力机制的预测算法,该算法利用时间序列数据,通过深度学习模型进行训练,能够更细致地分析和预测钢结构货架的变形。结合一个典型应用验证了模型性能,证实了其高稳健性和出色的预测精度。实验结果表明,该模型能够准确地预测钢结构货架的变形情况,其平均误差仅为0.15%~3.33%。这些结果表明了该算法在钢结构货架自动化监测领域的潜在应用前景,为其结构变形预测提供了一种可行的解决方案。 展开更多
关键词 自动化监测 深度学习 时间序列数据 双向长短时记忆网络与注意力机制(BiLSTM-Attention)
下载PDF
Wind Speed Short-Term Prediction Based on Empirical Wavelet Transform, Recurrent Neural Network and Error Correction
17
作者 朱昶胜 朱丽娜 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第2期297-308,共12页
Predicting wind speed accurately is essential to ensure the stability of the wind power system and improve the utilization rate of wind energy.However,owing to the stochastic and intermittent of wind speed,predicting ... Predicting wind speed accurately is essential to ensure the stability of the wind power system and improve the utilization rate of wind energy.However,owing to the stochastic and intermittent of wind speed,predicting wind speed accurately is difficult.A new hybrid deep learning model based on empirical wavelet transform,recurrent neural network and error correction for short-term wind speed prediction is proposed in this paper.The empirical wavelet transformation is applied to decompose the original wind speed series.The long short term memory network and the Elman neural network are adopted to predict low-frequency and high-frequency wind speed sub-layers respectively to balance the calculation efficiency and prediction accuracy.The error correction strategy based on deep long short term memory network is developed to modify the prediction errors.Four actual wind speed series are utilized to verify the effectiveness of the proposed model.The empirical results indicate that the method proposed in this paper has satisfactory performance in wind speed prediction. 展开更多
关键词 wind speed prediction empirical wavelet transform deep long short term memory network Elman neural network error correction strategy
原文传递
Medical Knowledge Extraction and Analysis from Electronic Medical Records Using Deep Learning 被引量:10
18
作者 李培林 袁贞明 +2 位作者 涂文博 俞凯 芦东昕 《Chinese Medical Sciences Journal》 CAS CSCD 2019年第2期133-139,共7页
Objectives Medical knowledge extraction (MKE) plays a key role in natural language processing (NLP) research in electronic medical records (EMR),which are the important digital carriers for recording medical activitie... Objectives Medical knowledge extraction (MKE) plays a key role in natural language processing (NLP) research in electronic medical records (EMR),which are the important digital carriers for recording medical activities of patients.Named entity recognition (NER) and medical relation extraction (MRE) are two basic tasks of MKE.This study aims to improve the recognition accuracy of these two tasks by exploring deep learning methods.Methods This study discussed and built two application scenes of bidirectional long short-term memory combined conditional random field (BiLSTM-CRF) model for NER and MRE tasks.In the data preprocessing of both tasks,a GloVe word embedding model was used to vectorize words.In the NER task,a sequence labeling strategy was used to classify each word tag by the joint probability distribution through the CRF layer.In the MRE task,the medical entity relation category was predicted by transforming the classification problem of a single entity into a sequence classification problem and linking the feature combinations between entities also through the CRF layer.Results Through the validation on the I2B2 2010 public dataset,the BiLSTM-CRF models built in this study got much better results than the baseline methods in the two tasks,where the F1-measure was up to 0.88 in NER task and 0.78 in MRE task.Moreover,the model converged faster and avoided problems such as overfitting.Conclusion This study proved the good performance of deep learning on medical knowledge extraction.It also verified the feasibility of the BiLSTM-CRF model in different application scenarios,laying the foundation for the subsequent work in the EMR field. 展开更多
关键词 MEDICAL knowledge EXTRACTION electronic MEDICAL RECORD named ENTITY recognition MEDICAL relation EXTRACTION deep learning bidirectional long short-term memory CONDITIONAL random field
下载PDF
基于特征加权的深度学习Android恶意检测系统研究 被引量:7
19
作者 葛文麒 杨清 +1 位作者 廖俊国 何羽轩 《计算机工程》 CAS CSCD 北大核心 2020年第11期174-180,共7页
当前Android系统恶意应用程序数量增长迅猛,然而传统检测系统无法对其进行快速有效检测,移动终端安全性面临严重威胁。提出一种将特征加权与双向长短期记忆(Bi-LSTM)神经网络深度学习算法相结合的恶意检测系统。采用静态分析方法从恶意... 当前Android系统恶意应用程序数量增长迅猛,然而传统检测系统无法对其进行快速有效检测,移动终端安全性面临严重威胁。提出一种将特征加权与双向长短期记忆(Bi-LSTM)神经网络深度学习算法相结合的恶意检测系统。采用静态分析方法从恶意与良性应用程序中提取不同类型行为特征,利用特征加权方法消除噪声与不相关因素后构建特征向量,使用Bi-LSTM深度学习算法优化行为特征参数,并设计恶意与良性应用程序分类模型,建立特征加权与深度学习算法相结合的恶意应用程序检测系统。实验结果表明,与支持向量机、RNN等传统检测系统相比,该系统对恶意应用程序具有较高的检测精度与准确率。 展开更多
关键词 andROID系统 恶意应用 特征加权 深度学习 双向长短期记忆神经网络
下载PDF
基于Android平台的精神疲劳检测系统的设计与应用 被引量:5
20
作者 陈泽龙 张少涵 +2 位作者 张振昌 林少炜 陈自谦 《医疗卫生装备》 CAS 2019年第12期28-32,共5页
目的:设计一套基于Android平台的精神疲劳检测系统,实时检测、监测被测对象的精神疲劳状态。方法:遵循准确性、易用性、便携性原则,利用脑电信号多尺度熵结合长短期记忆(long-short term memory,LSTM)人工神经网络模型,通过MindWave系... 目的:设计一套基于Android平台的精神疲劳检测系统,实时检测、监测被测对象的精神疲劳状态。方法:遵循准确性、易用性、便携性原则,利用脑电信号多尺度熵结合长短期记忆(long-short term memory,LSTM)人工神经网络模型,通过MindWave系列单通道脑电信号采集设备,设计并实现包括移动端和服务器端两大部分的精神疲劳检测系统。其中移动端采用Android Studio作为开发工具,通过Java编程语言进行设计;服务器端采用Eclipse作为开发工具,在Tomcat运行环境下进行设计。结果:该系统不仅可以显示脑电信号波形图,专注度、冥想度曲线图,以及从原始脑电信号数据提取出来的α波、β波和θ波波形图,对精神疲劳等级进行量化,还可以存储用户数据,不断完善LSTM人工神经网络模型,从而使量化结果越来越准确。结论:基于Android平台的精神疲劳检测系统小型、便捷,能够简便、快速、实时地对用户精神疲劳状态进行检测与监测,可防止疲劳作业引发的安全事故。 展开更多
关键词 精神疲劳检测 andROID平台 长短期记忆人工神经网络 脑电信号 多尺度熵 AI算法
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部